;; Copyright (c) 2010-2012, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;; This file defines the target for "double-pumped" SSE2, i.e. running ;; with 8-wide vectors ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; standard 8-wide definitions from m4 macros define(`WIDTH',`8') define(`MASK',`i32') include(`util.m4') stdlib_core() packed_load_and_store() scans() int64minmax() include(`target-sse2-common.ll') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; half conversion routines declare float @__half_to_float_uniform(i16 %v) nounwind readnone declare @__half_to_float_varying( %v) nounwind readnone declare i16 @__float_to_half_uniform(float %v) nounwind readnone declare @__float_to_half_varying( %v) nounwind readnone ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone define <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline { ; float iv = __rcp_v(v); ; return iv * (2. - v * iv); unary4to8(call, float, @llvm.x86.sse.rcp.ps, %0) ; do one N-R iteration %v_iv = fmul <8 x float> %0, %call %two_minus = fsub <8 x float> , %v_iv %iv_mul = fmul <8 x float> %call, %two_minus ret <8 x float> %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rsqrt declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone define <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline { ; float is = __rsqrt_v(v); unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v) ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul <8 x float> %v, %is %v_is_is = fmul <8 x float> %v_is, %is %three_sub = fsub <8 x float> , %v_is_is %is_mul = fmul <8 x float> %is, %three_sub %half_scale = fmul <8 x float> , %is_mul ret <8 x float> %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sqrt declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone define <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline { unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0) ret <8 x float> %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; svml stuff include(`svml.m4') ;; single precision svml_declare(float,f4,4) svml_define_x(float,f4,4,f,8) ;; double precision svml_declare(double,2,2) svml_define_x(double,2,2,d,8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone define <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1) ret <8 x float> %call } define <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1) ret <8 x float> %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; min/max ; There is no blend instruction with SSE2, so we simulate it with bit ; operations on i32s. For these two vselect functions, for each ; vector element, if the mask is on, we return the corresponding value ; from %1, and otherwise return the value from %0. define <8 x i32> @__vselect_i32(<8 x i32>, <8 x i32> , <8 x i32> %mask) nounwind readnone alwaysinline { %notmask = xor <8 x i32> %mask, %cleared_old = and <8 x i32> %0, %notmask %masked_new = and <8 x i32> %1, %mask %new = or <8 x i32> %cleared_old, %masked_new ret <8 x i32> %new } define <8 x float> @__vselect_float(<8 x float>, <8 x float>, <8 x i32> %mask) nounwind readnone alwaysinline { %v0 = bitcast <8 x float> %0 to <8 x i32> %v1 = bitcast <8 x float> %1 to <8 x i32> %r = call <8 x i32> @__vselect_i32(<8 x i32> %v0, <8 x i32> %v1, <8 x i32> %mask) %rf = bitcast <8 x i32> %r to <8 x float> ret <8 x float> %rf } ; To do vector integer min and max, we do the vector compare and then sign ; extend the i1 vector result to an i32 mask. The __vselect does the ; rest... define <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %c = icmp slt <8 x i32> %0, %1 %mask = sext <8 x i1> %c to <8 x i32> %v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask) ret <8 x i32> %v } define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp slt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %c = icmp sgt <8 x i32> %0, %1 %mask = sext <8 x i1> %c to <8 x i32> %v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask) ret <8 x i32> %v } define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp sgt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ; The functions for unsigned ints are similar, just with unsigned ; comparison functions... define <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %c = icmp ult <8 x i32> %0, %1 %mask = sext <8 x i1> %c to <8 x i32> %v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask) ret <8 x i32> %v } define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ult i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { %c = icmp ugt <8 x i32> %0, %1 %mask = sext <8 x i1> %c to <8 x i32> %v = call <8 x i32> @__vselect_i32(<8 x i32> %1, <8 x i32> %0, <8 x i32> %mask) ret <8 x i32> %v } define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ugt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone define i64 @__movmsk(<8 x i32>) nounwind readnone alwaysinline { ; first do two 4-wide movmsk calls %floatmask = bitcast <8 x i32> %0 to <8 x float> %m0 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone %m1 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone ; and shift the first one over by 4 before ORing it with the value ; of the second one %v1s = shl i32 %v1, 4 %v = or i32 %v0, %v1s %v64 = zext i32 %v to i64 ret i64 %v64 } define i1 @__any(<8 x i32>) nounwind readnone alwaysinline { ; first do two 4-wide movmsk calls %floatmask = bitcast <8 x i32> %0 to <8 x float> %m0 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone %m1 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone ; and shift the first one over by 4 before ORing it with the value ; of the second one %v1s = shl i32 %v1, 4 %v = or i32 %v0, %v1s %cmp = icmp ne i32 %v, 0 ret i1 %cmp } define i1 @__all(<8 x i32>) nounwind readnone alwaysinline { ; first do two 4-wide movmsk calls %floatmask = bitcast <8 x i32> %0 to <8 x float> %m0 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone %m1 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone ; and shift the first one over by 4 before ORing it with the value ; of the second one %v1s = shl i32 %v1, 4 %v = or i32 %v0, %v1s %cmp = icmp eq i32 %v, 255 ret i1 %cmp } define i1 @__none(<8 x i32>) nounwind readnone alwaysinline { ; first do two 4-wide movmsk calls %floatmask = bitcast <8 x i32> %0 to <8 x float> %m0 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone %m1 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone ; and shift the first one over by 4 before ORing it with the value ; of the second one %v1s = shl i32 %v1, 4 %v = or i32 %v0, %v1s %cmp = icmp eq i32 %v, 0 ret i1 %cmp } declare <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8>, <16 x i8>) nounwind readnone define i16 @__reduce_add_int8(<8 x i8>) nounwind readnone alwaysinline { %wide8 = shufflevector <8 x i8> %0, <8 x i8> zeroinitializer, <16 x i32> %rv = call <2 x i64> @llvm.x86.sse2.psad.bw(<16 x i8> %wide8, <16 x i8> zeroinitializer) %r0 = extractelement <2 x i64> %rv, i32 0 %r1 = extractelement <2 x i64> %rv, i32 1 %r = add i64 %r0, %r1 %r16 = trunc i64 %r to i16 ret i16 %r16 } define internal <8 x i16> @__add_varying_i16(<8 x i16>, <8 x i16>) nounwind readnone alwaysinline { %r = add <8 x i16> %0, %1 ret <8 x i16> %r } define internal i16 @__add_uniform_i16(i16, i16) nounwind readnone alwaysinline { %r = add i16 %0, %1 ret i16 %r } define i16 @__reduce_add_int16(<8 x i16>) nounwind readnone alwaysinline { reduce8(i16, @__add_varying_i16, @__add_uniform_i16) } define <4 x float> @__vec4_add_float(<4 x float> %v0, <4 x float> %v1) nounwind readnone alwaysinline { %v = fadd <4 x float> %v0, %v1 ret <4 x float> %v } define float @__add_float(float, float) nounwind readnone alwaysinline { %v = fadd float %0, %1 ret float %v } define float @__reduce_add_float(<8 x float>) nounwind readnone alwaysinline { reduce8by4(float, @__vec4_add_float, @__add_float) } define float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline { reduce8(float, @__min_varying_float, @__min_uniform_float) } define float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline { reduce8(float, @__max_varying_float, @__max_uniform_float) } ; helper function for reduce_add_int32 define <4 x i32> @__vec4_add_int32(<4 x i32> %v0, <4 x i32> %v1) nounwind readnone alwaysinline { %v = add <4 x i32> %v0, %v1 ret <4 x i32> %v } ; helper function for reduce_add_int32 define i32 @__add_int32(i32, i32) nounwind readnone alwaysinline { %v = add i32 %0, %1 ret i32 %v } define i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @__vec4_add_int32, @__add_int32) } define i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__min_varying_int32, @__min_uniform_int32) } define i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__max_varying_int32, @__max_uniform_int32) } define i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__min_varying_uint32, @__min_uniform_uint32) } define i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8(i32, @__max_varying_uint32, @__max_uniform_uint32) } define <4 x double> @__add_varying_double(<4 x double>, <4 x double>) nounwind readnone alwaysinline { %r = fadd <4 x double> %0, %1 ret <4 x double> %r } define double @__add_uniform_double(double, double) nounwind readnone alwaysinline { %r = fadd double %0, %1 ret double %r } define double @__reduce_add_double(<8 x double>) nounwind readnone { reduce8by4(double, @__add_varying_double, @__add_uniform_double) } define double @__reduce_min_double(<8 x double>) nounwind readnone { reduce8(double, @__min_varying_double, @__min_uniform_double) } define double @__reduce_max_double(<8 x double>) nounwind readnone { reduce8(double, @__max_varying_double, @__max_uniform_double) } define <4 x i64> @__add_varying_int64(<4 x i64>, <4 x i64>) nounwind readnone alwaysinline { %r = add <4 x i64> %0, %1 ret <4 x i64> %r } define i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline { %r = add i64 %0, %1 ret i64 %r } define i64 @__reduce_add_int64(<8 x i64>) nounwind readnone { reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64) } define i64 @__reduce_min_int64(<8 x i64>) nounwind readnone { reduce8(i64, @__min_varying_int64, @__min_uniform_int64) } define i64 @__reduce_max_int64(<8 x i64>) nounwind readnone { reduce8(i64, @__max_varying_int64, @__max_uniform_int64) } define i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone { reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64) } define i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone { reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64) } reduce_equal(8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts masked_load(i8, 1) masked_load(i16, 2) masked_load(i32, 4) masked_load(float, 4) masked_load(i64, 8) masked_load(double, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter gen_gather_factored(i8) gen_gather_factored(i16) gen_gather_factored(i32) gen_gather_factored(float) gen_gather_factored(i64) gen_gather_factored(double) gen_scatter(i8) gen_scatter(i16) gen_scatter(i32) gen_scatter(float) gen_scatter(i64) gen_scatter(double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float rounding ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding ;; ;; There are not any rounding instructions in SSE2, so we have to emulate ;; the functionality with multiple instructions... ; The code for __round_* is the result of compiling the following source ; code. ; ; export float Round(float x) { ; unsigned int sign = signbits(x); ; unsigned int ix = intbits(x); ; ix ^= sign; ; x = floatbits(ix); ; x += 0x1.0p23f; ; x -= 0x1.0p23f; ; ix = intbits(x); ; ix ^= sign; ; x = floatbits(ix); ; return x; ;} define <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline { %float_to_int_bitcast.i.i.i.i = bitcast <8 x float> %0 to <8 x i32> %bitop.i.i = and <8 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i = xor <8 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i40.i = bitcast <8 x i32> %bitop.i to <8 x float> %binop.i = fadd <8 x float> %int_to_float_bitcast.i.i40.i, %binop21.i = fadd <8 x float> %binop.i, %float_to_int_bitcast.i.i.i = bitcast <8 x float> %binop21.i to <8 x i32> %bitop31.i = xor <8 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop31.i to <8 x float> ret <8 x float> %int_to_float_bitcast.i.i.i } ;; Similarly, for implementations of the __floor* functions below, we have the ;; bitcode from compiling the following source code... ;export float Floor(float x) { ; float y = Round(x); ; unsigned int cmp = y > x ? 0xffffffff : 0; ; float delta = -1.f; ; unsigned int idelta = intbits(delta); ; idelta &= cmp; ; delta = floatbits(idelta); ; return y + delta; ;} define <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind %bincmp.i = fcmp ogt <8 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32> %bitop.i = and <8 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float> %binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <8 x float> %binop.i } ;; And here is the code we compiled to get the __ceil* functions below ; ;export uniform float Ceil(uniform float x) { ; uniform float y = Round(x); ; uniform int yltx = y < x ? 0xffffffff : 0; ; uniform float delta = 1.f; ; uniform int idelta = intbits(delta); ; idelta &= yltx; ; delta = floatbits(idelta); ; return y + delta; ;} define <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <8 x float> @__round_varying_float(<8 x float> %0) nounwind %bincmp.i = fcmp olt <8 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <8 x i1> %bincmp.i to <8 x i32> %bitop.i = and <8 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <8 x i32> %bitop.i to <8 x float> %binop.i = fadd <8 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <8 x float> %binop.i } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding doubles define <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline { unary1to8(double, @round) } define <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline { unary1to8(double, @floor) } define <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline { unary1to8(double, @ceil) } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store gen_masked_store(i8) gen_masked_store(i16) gen_masked_store(i32) gen_masked_store(i64) masked_store_blend_8_16_by_8() define void @__masked_store_blend_i32(<8 x i32>* nocapture, <8 x i32>, <8 x i32> %mask) nounwind alwaysinline { %val = load <8 x i32> * %0, align 4 %newval = call <8 x i32> @__vselect_i32(<8 x i32> %val, <8 x i32> %1, <8 x i32> %mask) store <8 x i32> %newval, <8 x i32> * %0, align 4 ret void } define void @__masked_store_blend_i64(<8 x i64>* nocapture %ptr, <8 x i64> %new, <8 x i32> %mask) nounwind alwaysinline { %oldValue = load <8 x i64>* %ptr, align 8 ; Do 8x64-bit blends by doing two <8 x i32> blends, where the <8 x i32> values ; are actually bitcast <2 x i64> values ; ; set up the first two 64-bit values %old0123 = shufflevector <8 x i64> %oldValue, <8 x i64> undef, <4 x i32> %old0123f = bitcast <4 x i64> %old0123 to <8 x float> %new0123 = shufflevector <8 x i64> %new, <8 x i64> undef, <4 x i32> %new0123f = bitcast <4 x i64> %new0123 to <8 x float> ; compute mask--note that the indices are doubled-up %mask0123 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> ; and blend the first 4 values %result0123f = call <8 x float> @__vselect_float(<8 x float> %old0123f, <8 x float> %new0123f, <8 x i32> %mask0123) %result0123 = bitcast <8 x float> %result0123f to <4 x i64> ; and again %old4567 = shufflevector <8 x i64> %oldValue, <8 x i64> undef, <4 x i32> %old4567f = bitcast <4 x i64> %old4567 to <8 x float> %new4567 = shufflevector <8 x i64> %new, <8 x i64> undef, <4 x i32> %new4567f = bitcast <4 x i64> %new4567 to <8 x float> ; compute mask--note that the values are doubled-up %mask4567 = shufflevector <8 x i32> %mask, <8 x i32> undef, <8 x i32> ; and blend the two of the values %result4567f = call <8 x float> @__vselect_float(<8 x float> %old4567f, <8 x float> %new4567f, <8 x i32> %mask4567) %result4567 = bitcast <8 x float> %result4567f to <4 x i64> ; reconstruct the final <8 x i64> vector %final = shufflevector <4 x i64> %result0123, <4 x i64> %result4567, <8 x i32> store <8 x i64> %final, <8 x i64> * %ptr, align 8 ret void } masked_store_float_double() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone define <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline { unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0) ret <8 x double> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision float min/max declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone define <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1) ret <8 x double> %ret } define <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1) ret <8 x double> %ret }