/* Copyright (c) 2010-2011, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define bool int typedef float<3> float3; struct Ray { float3 origin, dir, invDir; uniform unsigned int dirIsNeg[3]; float mint, maxt; int hitId; }; struct Triangle { uniform float p[3][4]; uniform int id; uniform int pad[3]; }; struct LinearBVHNode { uniform float bounds[2][3]; uniform unsigned int offset; // num primitives for leaf, second child for interior uniform unsigned int8 nPrimitives; uniform unsigned int8 splitAxis; uniform unsigned int16 pad; }; static inline float3 Cross(const float3 v1, const float3 v2) { float v1x = v1.x, v1y = v1.y, v1z = v1.z; float v2x = v2.x, v2y = v2.y, v2z = v2.z; float3 ret; ret.x = (v1y * v2z) - (v1z * v2y); ret.y = (v1z * v2x) - (v1x * v2z); ret.z = (v1x * v2y) - (v1y * v2x); return ret; } static inline float Dot(const float3 a, const float3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } static void generateRay(uniform const float raster2camera[4][4], uniform const float camera2world[4][4], float x, float y, Ray &ray) { ray.mint = 0.f; ray.maxt = 1e30f; ray.hitId = 0; // transform raster coordinate (x, y, 0) to camera space float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3]; float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3]; float camz = raster2camera[2][3]; float camw = raster2camera[3][3]; camx /= camw; camy /= camw; camz /= camw; ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy + camera2world[0][2] * camz; ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy + camera2world[1][2] * camz; ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy + camera2world[2][2] * camz; ray.origin.x = camera2world[0][3] / camera2world[3][3]; ray.origin.y = camera2world[1][3] / camera2world[3][3]; ray.origin.z = camera2world[2][3] / camera2world[3][3]; ray.invDir = 1.f / ray.dir; ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0; ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0; ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0; } static inline bool BBoxIntersect(const uniform float bounds[2][3], const Ray &ray) { uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] }; uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] }; float t0 = ray.mint, t1 = ray.maxt; // Check all three axis-aligned slabs. Don't try to early out; it's // not worth the trouble float3 tNear = (bounds0 - ray.origin) * ray.invDir; float3 tFar = (bounds1 - ray.origin) * ray.invDir; if (tNear.x > tFar.x) { float tmp = tNear.x; tNear.x = tFar.x; tFar.x = tmp; } t0 = max(tNear.x, t0); t1 = min(tFar.x, t1); if (tNear.y > tFar.y) { float tmp = tNear.y; tNear.y = tFar.y; tFar.y = tmp; } t0 = max(tNear.y, t0); t1 = min(tFar.y, t1); if (tNear.z > tFar.z) { float tmp = tNear.z; tNear.z = tFar.z; tFar.z = tmp; } t0 = max(tNear.z, t0); t1 = min(tFar.z, t1); return (t0 <= t1); } static inline bool TriIntersect(const Triangle &tri, Ray &ray) { uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] }; uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] }; uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] }; uniform float3 e1 = p1 - p0; uniform float3 e2 = p2 - p0; float3 s1 = Cross(ray.dir, e2); float divisor = Dot(s1, e1); bool hit = true; if (divisor == 0.) hit = false; float invDivisor = 1.f / divisor; // Compute first barycentric coordinate float3 d = ray.origin - p0; float b1 = Dot(d, s1) * invDivisor; if (b1 < 0. || b1 > 1.) hit = false; // Compute second barycentric coordinate float3 s2 = Cross(d, e1); float b2 = Dot(ray.dir, s2) * invDivisor; if (b2 < 0. || b1 + b2 > 1.) hit = false; // Compute _t_ to intersection point float t = Dot(e2, s2) * invDivisor; if (t < ray.mint || t > ray.maxt) hit = false; if (hit) { ray.maxt = t; ray.hitId = tri.id; } return hit; } bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[], Ray &r) { Ray ray = r; bool hit = false; // Follow ray through BVH nodes to find primitive intersections uniform int todoOffset = 0, nodeNum = 0; uniform int todo[64]; while (true) { // Check ray against BVH node LinearBVHNode node = nodes[nodeNum]; if (any(BBoxIntersect(node.bounds, ray))) { uniform unsigned int nPrimitives = node.nPrimitives; if (nPrimitives > 0) { // Intersect ray with primitives in leaf BVH node uniform unsigned int primitivesOffset = node.offset; for (uniform unsigned int i = 0; i < nPrimitives; ++i) { if (TriIntersect(tris[primitivesOffset+i], ray)) hit = true; } if (todoOffset == 0) break; nodeNum = todo[--todoOffset]; } else { // Put far BVH node on _todo_ stack, advance to near node if (r.dirIsNeg[node.splitAxis]) { todo[todoOffset++] = nodeNum + 1; nodeNum = node.offset; } else { todo[todoOffset++] = node.offset; nodeNum = nodeNum + 1; } } } else { if (todoOffset == 0) break; nodeNum = todo[--todoOffset]; } } r.maxt = ray.maxt; r.hitId = ray.hitId; return hit; } static void raytrace_tile(uniform int x0, uniform int x1, uniform int y0, uniform int y1, uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const LinearBVHNode nodes[], const Triangle triangles[]) { uniform float widthScale = (float)(baseWidth) / (float)(width); uniform float heightScale = (float)(baseHeight) / (float)(height); static const uniform float udx[16] = { 0, 1, 0, 1, 2, 3, 2, 3, 0, 1, 0, 1, 2, 3, 2, 3 }; static const uniform float udy[16] = { 0, 0, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 2, 2, 3, 3 }; // The outer loops are always over blocks of 4x4 pixels for (uniform int y = y0; y < y1; y += 4) { for (uniform int x = x0; x < x1; x += 4) { // Now we have a block of 4x4=16 pixels to process; it will // take 16/programCount iterations of this loop to process // them. for (uniform int o = 0; o < 16 / programCount; ++o) { // Map program instances to samples in the udx/udy arrays // to figure out which pixel each program instance is // responsible for const float dx = udx[o * programCount + programIndex]; const float dy = udy[o * programCount + programIndex]; Ray ray; generateRay(raster2camera, camera2world, (x+dx)*widthScale, (y+dy)*heightScale, ray); BVHIntersect(nodes, triangles, ray); int offset = (y + (int)dy) * width + (x + (int)dx); image[offset] = ray.maxt; id[offset] = ray.hitId; } } } } export void raytrace_ispc(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const LinearBVHNode nodes[], const Triangle triangles[]) { raytrace_tile(0, width, 0, height, width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles); } task void raytrace_tile_task(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const LinearBVHNode nodes[], const Triangle triangles[]) { uniform int dx = 16, dy = 16; // must match dx, dy below uniform int xBuckets = (width + (dx-1)) / dx; uniform int x0 = (taskIndex % xBuckets) * dx; uniform int x1 = min(x0 + dx, width); uniform int y0 = (taskIndex / xBuckets) * dy; uniform int y1 = min(y0 + dy, height); raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles); } export void raytrace_ispc_tasks(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const LinearBVHNode nodes[], const Triangle triangles[]) { uniform int dx = 16, dy = 16; uniform int xBuckets = (width + (dx-1)) / dx; uniform int yBuckets = (height + (dy-1)) / dy; uniform int nTasks = xBuckets * yBuckets; launch[nTasks] < raytrace_tile_task(width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles) >; }