;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;; This file provides a variety of macros used to generate LLVM bitcode ;; parametrized in various ways. Implementations of the standard library ;; builtins for various targets can use macros from this file to simplify ;; generating code for their implementations of those builtins. declare i1 @__is_compile_time_constant_uniform_int32(i32) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Helper macro for calling various SSE instructions for scalar values ;; but where the instruction takes a vector parameter. ;; $1 : name of variable to put the final value in ;; $2 : vector width of the target ;; $3 : scalar type of the operand ;; $4 : SSE intrinsic name ;; $5 : variable name that has the scalar value ;; For example, the following call causes the variable %ret to have ;; the result of a call to sqrtss with the scalar value in %0 ;; sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0) define(`sse_unary_scalar', ` %$1_vec = insertelement <$2 x $3> undef, $3 $5, i32 0 %$1_val = call <$2 x $3> $4(<$2 x $3> %$1_vec) %$1 = extractelement <$2 x $3> %$1_val, i32 0 ') ;; Similar to `sse_unary_scalar', this helper macro is for calling binary ;; SSE instructions with scalar values, ;; $1: name of variable to put the result in ;; $2: vector width of the target ;; $3: scalar type of the operand ;; $4 : SSE intrinsic name ;; $5 : variable name that has the first scalar operand ;; $6 : variable name that has the second scalar operand define(`sse_binary_scalar', ` %$1_veca = insertelement <$2 x $3> undef, $3 $5, i32 0 %$1_vecb = insertelement <$2 x $3> undef, $3 $6, i32 0 %$1_val = call <$2 x $3> $4(<$2 x $3> %$1_veca, <$2 x $3> %$1_vecb) %$1 = extractelement <$2 x $3> %$1_val, i32 0 ') ;; Do a reduction over a 4-wide vector ;; $1: type of final scalar result ;; $2: 4-wide function that takes 2 4-wide operands and returns the ;; element-wise reduction ;; $3: scalar function that takes two scalar operands and returns ;; the final reduction define(`reduce4', ` %v1 = shufflevector <4 x $1> %0, <4 x $1> undef, <4 x i32> %m1 = call <4 x $1> $2(<4 x $1> %v1, <4 x $1> %0) %m1a = extractelement <4 x $1> %m1, i32 0 %m1b = extractelement <4 x $1> %m1, i32 1 %m = call $1 $3($1 %m1a, $1 %m1b) ret $1 %m ' ) ;; Similar to `reduce4', do a reduction over an 8-wide vector ;; $1: type of final scalar result ;; $2: 8-wide function that takes 2 8-wide operands and returns the ;; element-wise reduction ;; $3: scalar function that takes two scalar operands and returns ;; the final reduction define(`reduce8', ` %v1 = shufflevector <8 x $1> %0, <8 x $1> undef, <8 x i32> %m1 = call <8 x $1> $2(<8 x $1> %v1, <8 x $1> %0) %v2 = shufflevector <8 x $1> %m1, <8 x $1> undef, <8 x i32> %m2 = call <8 x $1> $2(<8 x $1> %v2, <8 x $1> %m1) %m2a = extractelement <8 x $1> %m2, i32 0 %m2b = extractelement <8 x $1> %m2, i32 1 %m = call $1 $3($1 %m2a, $1 %m2b) ret $1 %m ' ) ;; Do an reduction over an 8-wide vector, using a vector reduction function ;; that only takes 4-wide vectors ;; $1: type of final scalar result ;; $2: 4-wide function that takes 2 4-wide operands and returns the ;; element-wise reduction ;; $3: scalar function that takes two scalar operands and returns ;; the final reduction define(`reduce8by4', ` %v1 = shufflevector <8 x $1> %0, <8 x $1> undef, <4 x i32> %v2 = shufflevector <8 x $1> %0, <8 x $1> undef, <4 x i32> %m1 = call <4 x $1> $2(<4 x $1> %v1, <4 x $1> %v2) %v3 = shufflevector <4 x $1> %m1, <4 x $1> undef, <4 x i32> %m2 = call <4 x $1> $2(<4 x $1> %v3, <4 x $1> %m1) %m2a = extractelement <4 x $1> %m2, i32 0 %m2b = extractelement <4 x $1> %m2, i32 1 %m = call $1 $3($1 %m2a, $1 %m2b) ret $1 %m ' ) ;; Given a unary function that takes a 2-wide vector and a 4-wide vector ;; that we'd like to apply it to, extract 2 2-wide vectors from the 4-wide ;; vector, apply it, and return the corresponding 4-wide vector result ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 2-wide unary vector function to apply ;; $4: 4-wide operand value define(`unary2to4', ` %$1_0 = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> %v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0) %$1_1 = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> %v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1) %$1 = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1, <4 x i32> ' ) ;; Similar to `unary2to4', this applies a 2-wide binary function to two 4-wide ;; vector operands ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 2-wide binary vector function to apply ;; $4: First 4-wide operand value ;; $5: Second 4-wide operand value define(`binary2to4', ` %$1_0a = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> %$1_0b = shufflevector <4 x $2> $5, <4 x $2> undef, <2 x i32> %v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0a, <2 x $2> %$1_0b) %$1_1a = shufflevector <4 x $2> $4, <4 x $2> undef, <2 x i32> %$1_1b = shufflevector <4 x $2> $5, <4 x $2> undef, <2 x i32> %v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1a, <2 x $2> %$1_1b) %$1 = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1, <4 x i32> ' ) ;; Similar to `unary2to4', this maps a 4-wide unary function to an 8-wide ;; vector operand ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 4-wide unary vector function to apply ;; $4: 8-wide operand value define(`unary4to8', ` %$1_0 = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> %v$1_0 = call <4 x $2> $3(<4 x $2> %$1_0) %$1_1 = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> %v$1_1 = call <4 x $2> $3(<4 x $2> %$1_1) %$1 = shufflevector <4 x $2> %v$1_0, <4 x $2> %v$1_1, <8 x i32> ' ) ;; And along the lines of `binary2to4', this maps a 4-wide binary function to ;; two 8-wide vector operands ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 4-wide unary vector function to apply ;; $4: First 8-wide operand value ;; $5: Second 8-wide operand value define(`binary4to8', ` %$1_0a = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> %$1_0b = shufflevector <8 x $2> $5, <8 x $2> undef, <4 x i32> %v$1_0 = call <4 x $2> $3(<4 x $2> %$1_0a, <4 x $2> %$1_0b) %$1_1a = shufflevector <8 x $2> $4, <8 x $2> undef, <4 x i32> %$1_1b = shufflevector <8 x $2> $5, <8 x $2> undef, <4 x i32> %v$1_1 = call <4 x $2> $3(<4 x $2> %$1_1a, <4 x $2> %$1_1b) %$1 = shufflevector <4 x $2> %v$1_0, <4 x $2> %v$1_1, <8 x i32> ' ) ;; Maps a 2-wide unary function to an 8-wide vector operand, returning an ;; 8-wide vector result ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 2-wide unary vector function to apply ;; $4: 8-wide operand value define(`unary2to8', ` %$1_0 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0) %$1_1 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1) %$1_2 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %v$1_2 = call <2 x $2> $3(<2 x $2> %$1_2) %$1_3 = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %v$1_3 = call <2 x $2> $3(<2 x $2> %$1_3) %$1a = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1, <4 x i32> %$1b = shufflevector <2 x $2> %v$1_2, <2 x $2> %v$1_3, <4 x i32> %$1 = shufflevector <4 x $2> %$1a, <4 x $2> %$1b, <8 x i32> ' ) ;; Maps an 2-wide binary function to two 8-wide vector operands ;; $1: name of variable into which the final result should go ;; $2: scalar type of the vector elements ;; $3: 2-wide unary vector function to apply ;; $4: First 8-wide operand value ;; $5: Second 8-wide operand value define(`binary2to8', ` %$1_0a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %$1_0b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> %v$1_0 = call <2 x $2> $3(<2 x $2> %$1_0a, <2 x $2> %$1_0b) %$1_1a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %$1_1b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> %v$1_1 = call <2 x $2> $3(<2 x $2> %$1_1a, <2 x $2> %$1_1b) %$1_2a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %$1_2b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> %v$1_2 = call <2 x $2> $3(<2 x $2> %$1_2a, <2 x $2> %$1_2b) %$1_3a = shufflevector <8 x $2> $4, <8 x $2> undef, <2 x i32> %$1_3b = shufflevector <8 x $2> $5, <8 x $2> undef, <2 x i32> %v$1_3 = call <2 x $2> $3(<2 x $2> %$1_3a, <2 x $2> %$1_3b) %$1a = shufflevector <2 x $2> %v$1_0, <2 x $2> %v$1_1, <4 x i32> %$1b = shufflevector <2 x $2> %v$1_2, <2 x $2> %v$1_3, <4 x i32> %$1 = shufflevector <4 x $2> %$1a, <4 x $2> %$1b, <8 x i32> ' ) ;; The unary SSE round intrinsic takes a second argument that encodes the ;; rounding mode. This macro makes it easier to apply the 4-wide roundps ;; to 8-wide vector operands ;; $1: value to be rounded ;; $2: integer encoding of rounding mode ;; FIXME: this just has a ret statement at the end to return the result, ;; which is inconsistent with the macros above define(`round4to8', ` %v0 = shufflevector <8 x float> $1, <8 x float> undef, <4 x i32> %v1 = shufflevector <8 x float> $1, <8 x float> undef, <4 x i32> %r0 = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %v0, i32 $2) %r1 = call <4 x float> @llvm.x86.sse41.round.ps(<4 x float> %v1, i32 $2) %ret = shufflevector <4 x float> %r0, <4 x float> %r1, <8 x i32> ret <8 x float> %ret ' ) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; forloop macro divert(`-1') # forloop(var, from, to, stmt) - improved version: # works even if VAR is not a strict macro name # performs sanity check that FROM is larger than TO # allows complex numerical expressions in TO and FROM define(`forloop', `ifelse(eval(`($3) >= ($2)'), `1', `pushdef(`$1', eval(`$2'))_$0(`$1', eval(`$3'), `$4')popdef(`$1')')') define(`_forloop', `$3`'ifelse(indir(`$1'), `$2', `', `define(`$1', incr(indir(`$1')))$0($@)')') divert`'dnl ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; stdlib_core ;; ;; This macro defines a bunch of helper routines that only depend on the ;; target's vector width, which it takes as its first parameter. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; define(`shuffles', ` define internal <$1 x $2> @__broadcast_$3(<$1 x $2>, i32) nounwind readnone alwaysinline { %v = extractelement <$1 x $2> %0, i32 %1 %r_0 = insertelement <$1 x $2> undef, $2 %v, i32 0 forloop(i, 1, eval($1-1), ` %r_`'i = insertelement <$1 x $2> %r_`'eval(i-1), $2 %v, i32 i ') ret <$1 x $2> %r_`'eval($1-1) } define internal <$1 x $2> @__rotate_$3(<$1 x $2>, i32) nounwind readnone alwaysinline { %isc = call i1 @__is_compile_time_constant_uniform_int32(i32 %1) br i1 %isc, label %is_const, label %not_const is_const: ; though verbose, this turms into tight code if %1 is a constant forloop(i, 0, eval($1-1), ` %delta_`'i = add i32 %1, i %delta_clamped_`'i = and i32 %delta_`'i, eval($1-1) %v_`'i = extractelement <$1 x $2> %0, i32 %delta_clamped_`'i') %ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0 forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i ') ret <$1 x $2> %ret_`'eval($1-1) not_const: ; store two instances of the vector into memory %ptr = alloca <$1 x $2>, i32 2 %ptr0 = getelementptr <$1 x $2> * %ptr, i32 0 store <$1 x $2> %0, <$1 x $2> * %ptr0 %ptr1 = getelementptr <$1 x $2> * %ptr, i32 1 store <$1 x $2> %0, <$1 x $2> * %ptr1 ; compute offset in [0,vectorwidth-1], then index into the doubled-up vector %offset = and i32 %1, eval($1-1) %ptr_as_elt_array = bitcast <$1 x $2> * %ptr to [eval(2*$1) x $2] * %load_ptr = getelementptr [eval(2*$1) x $2] * %ptr_as_elt_array, i32 0, i32 %offset %load_ptr_vec = bitcast $2 * %load_ptr to <$1 x $2> * %result = load <$1 x $2> * %load_ptr_vec, align $4 ret <$1 x $2> %result } define internal <$1 x $2> @__shuffle_$3(<$1 x $2>, <$1 x i32>) nounwind readnone alwaysinline { forloop(i, 0, eval($1-1), ` %index_`'i = extractelement <$1 x i32> %1, i32 i') forloop(i, 0, eval($1-1), ` %v_`'i = extractelement <$1 x $2> %0, i32 %index_`'i') %ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0 forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i ') ret <$1 x $2> %ret_`'eval($1-1) } define internal <$1 x $2> @__shuffle2_$3(<$1 x $2>, <$1 x $2>, <$1 x i32>) nounwind readnone alwaysinline { %v2 = shufflevector <$1 x $2> %0, <$1 x $2> %1, < forloop(i, 0, eval(2*$1-2), `i32 i, ') i32 eval(2*$1-1) > forloop(i, 0, eval($1-1), ` %index_`'i = extractelement <$1 x i32> %2, i32 i') %isc = call i1 @__is_compile_time_constant_varying_int32(<$1 x i32> %2) br i1 %isc, label %is_const, label %not_const is_const: ; extract from the requested lanes and insert into the result; LLVM turns ; this into good code in the end forloop(i, 0, eval($1-1), ` %v_`'i = extractelement %v2, i32 %index_`'i') %ret_0 = insertelement <$1 x $2> undef, $2 %v_0, i32 0 forloop(i, 1, eval($1-1), ` %ret_`'i = insertelement <$1 x $2> %ret_`'eval(i-1), $2 %v_`'i, i32 i ') ret <$1 x $2> %ret_`'eval($1-1) not_const: ; otherwise store the two vectors onto the stack and then use the given ; permutation vector to get indices into that array... %ptr = alloca store %v2, * %ptr %baseptr = bitcast * %ptr to $2 * %ptr_0 = getelementptr $2 * %baseptr, i32 %index_0 %val_0 = load $2 * %ptr_0 %result_0 = insertelement <$1 x $2> undef, $2 %val_0, i32 0 forloop(i, 1, eval($1-1), ` %ptr_`'i = getelementptr $2 * %baseptr, i32 %index_`'i %val_`'i = load $2 * %ptr_`'i %result_`'i = insertelement <$1 x $2> %result_`'eval(i-1), $2 %val_`'i, i32 i ') ret <$1 x $2> %result_`'eval($1-1) } ') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; global_atomic ;; Defines the implementation of a function that handles the mapping from ;; an ispc atomic function to the underlying LLVM intrinsics. Specifically, ;; the function handles loooping over the active lanes, calling the underlying ;; scalar atomic intrinsic for each one, and assembling the vector result. ;; ;; Takes four parameters: ;; $1: vector width of the target ;; $2: operation being performed (w.r.t. LLVM atomic intrinsic names) ;; (add, sub...) ;; $3: return type of the LLVM atomic (e.g. i32) ;; $4: return type of the LLVM atomic type, in ispc naming paralance (e.g. int32) define(`global_atomic', ` declare $3 @llvm.atomic.load.$2.$3.p0$3($3 * %ptr, $3 %delta) define internal <$1 x $3> @__atomic_$2_$4_global($3 * %ptr, <$1 x $3> %val, <$1 x i32> %mask) nounwind alwaysinline { %rptr = alloca <$1 x $3> %rptr32 = bitcast <$1 x $3> * %rptr to $3 * per_lane($1, <$1 x i32> %mask, ` %v_LANE_ID = extractelement <$1 x $3> %val, i32 LANE %r_LANE_ID = call $3 @llvm.atomic.load.$2.$3.p0$3($3 * %ptr, $3 %v_LANE_ID) %rp_LANE_ID = getelementptr $3 * %rptr32, i32 LANE store $3 %r_LANE_ID, $3 * %rp_LANE_ID') %r = load <$1 x $3> * %rptr ret <$1 x $3> %r } ') ;; Macro to declare the function that implements the swap atomic. ;; Takes three parameters: ;; $1: vector width of the target ;; $2: llvm type of the vector elements (e.g. i32) ;; $3: ispc type of the elements (e.g. int32) define(`global_swap', ` declare $2 @llvm.atomic.swap.$2.p0$2($2 * %ptr, $2 %val) define internal <$1 x $2> @__atomic_swap_$3_global($2* %ptr, <$1 x $2> %val, <$1 x i32> %mask) nounwind alwaysinline { %rptr = alloca <$1 x $2> %rptr32 = bitcast <$1 x $2> * %rptr to $2 * per_lane($1, <$1 x i32> %mask, ` %val_LANE_ID = extractelement <$1 x $2> %val, i32 LANE %r_LANE_ID = call $2 @llvm.atomic.swap.$2.p0$2($2 * %ptr, $2 %val_LANE_ID) %rp_LANE_ID = getelementptr $2 * %rptr32, i32 LANE store $2 %r_LANE_ID, $2 * %rp_LANE_ID') %r = load <$1 x $2> * %rptr ret <$1 x $2> %r } ') ;; Similarly, macro to declare the function that implements the compare/exchange ;; atomic. Takes three parameters: ;; $1: vector width of the target ;; $2: llvm type of the vector elements (e.g. i32) ;; $3: ispc type of the elements (e.g. int32) define(`global_atomic_exchange', ` declare $2 @llvm.atomic.cmp.swap.$2.p0$2($2 * %ptr, $2 %cmp, $2 %val) define internal <$1 x $2> @__atomic_compare_exchange_$3_global($2* %ptr, <$1 x $2> %cmp, <$1 x $2> %val, <$1 x i32> %mask) nounwind alwaysinline { %rptr = alloca <$1 x $2> %rptr32 = bitcast <$1 x $2> * %rptr to $2 * per_lane($1, <$1 x i32> %mask, ` %cmp_LANE_ID = extractelement <$1 x $2> %cmp, i32 LANE %val_LANE_ID = extractelement <$1 x $2> %val, i32 LANE %r_LANE_ID = call $2 @llvm.atomic.cmp.swap.$2.p0$2($2 * %ptr, $2 %cmp_LANE_ID, $2 %val_LANE_ID) %rp_LANE_ID = getelementptr $2 * %rptr32, i32 LANE store $2 %r_LANE_ID, $2 * %rp_LANE_ID') %r = load <$1 x $2> * %rptr ret <$1 x $2> %r } ') define(`stdlib_core', ` declare i1 @__is_compile_time_constant_mask(<$1 x i32> %mask) declare i1 @__is_compile_time_constant_varying_int32(<$1 x i32>) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; vector ops define internal float @__extract(<$1 x float>, i32) nounwind readnone alwaysinline { %extract = extractelement <$1 x float> %0, i32 %1 ret float %extract } define internal <$1 x float> @__insert(<$1 x float>, i32, float) nounwind readnone alwaysinline { %insert = insertelement <$1 x float> %0, float %2, i32 %1 ret <$1 x float> %insert } shuffles($1, float, float, 4) shuffles($1, i32, int32, 4) shuffles($1, double, double, 8) shuffles($1, i64, int64, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; various bitcasts from one type to another define internal <$1 x i32> @__intbits_varying_float(<$1 x float>) nounwind readnone alwaysinline { %float_to_int_bitcast = bitcast <$1 x float> %0 to <$1 x i32> ret <$1 x i32> %float_to_int_bitcast } define internal i32 @__intbits_uniform_float(float) nounwind readnone alwaysinline { %float_to_int_bitcast = bitcast float %0 to i32 ret i32 %float_to_int_bitcast } define internal <$1 x i64> @__intbits_varying_double(<$1 x double>) nounwind readnone alwaysinline { %double_to_int_bitcast = bitcast <$1 x double> %0 to <$1 x i64> ret <$1 x i64> %double_to_int_bitcast } define internal i64 @__intbits_uniform_double(double) nounwind readnone alwaysinline { %double_to_int_bitcast = bitcast double %0 to i64 ret i64 %double_to_int_bitcast } define internal <$1 x float> @__floatbits_varying_int32(<$1 x i32>) nounwind readnone alwaysinline { %int_to_float_bitcast = bitcast <$1 x i32> %0 to <$1 x float> ret <$1 x float> %int_to_float_bitcast } define internal float @__floatbits_uniform_int32(i32) nounwind readnone alwaysinline { %int_to_float_bitcast = bitcast i32 %0 to float ret float %int_to_float_bitcast } define internal <$1 x double> @__doublebits_varying_int64(<$1 x i64>) nounwind readnone alwaysinline { %int_to_double_bitcast = bitcast <$1 x i64> %0 to <$1 x double> ret <$1 x double> %int_to_double_bitcast } define internal double @__doublebits_uniform_int64(i64) nounwind readnone alwaysinline { %int_to_double_bitcast = bitcast i64 %0 to double ret double %int_to_double_bitcast } define internal <$1 x float> @__undef_varying() nounwind readnone alwaysinline { ret <$1 x float> undef } define internal float @__undef_uniform() nounwind readnone alwaysinline { ret float undef } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; stdlib transcendentals ;; ;; These functions provide entrypoints that call out to the libm ;; implementations of the transcendental functions ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; declare float @sinf(float) nounwind readnone declare float @cosf(float) nounwind readnone declare void @sincosf(float, float *, float *) nounwind readnone declare float @tanf(float) nounwind readnone declare float @atanf(float) nounwind readnone declare float @atan2f(float, float) nounwind readnone declare float @expf(float) nounwind readnone declare float @logf(float) nounwind readnone declare float @powf(float, float) nounwind readnone define internal float @__stdlib_sin(float) nounwind readnone alwaysinline { %r = call float @sinf(float %0) ret float %r } define internal float @__stdlib_cos(float) nounwind readnone alwaysinline { %r = call float @cosf(float %0) ret float %r } define internal void @__stdlib_sincos(float, float *, float *) nounwind readnone alwaysinline { call void @sincosf(float %0, float *%1, float *%2) ret void } define internal float @__stdlib_tan(float) nounwind readnone alwaysinline { %r = call float @tanf(float %0) ret float %r } define internal float @__stdlib_atan(float) nounwind readnone alwaysinline { %r = call float @atanf(float %0) ret float %r } define internal float @__stdlib_atan2(float, float) nounwind readnone alwaysinline { %r = call float @atan2f(float %0, float %1) ret float %r } define internal float @__stdlib_log(float) nounwind readnone alwaysinline { %r = call float @logf(float %0) ret float %r } define internal float @__stdlib_exp(float) nounwind readnone alwaysinline { %r = call float @expf(float %0) ret float %r } define internal float @__stdlib_pow(float, float) nounwind readnone alwaysinline { %r = call float @powf(float %0, float %1) ret float %r } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; atomics and memory barriers declare void @llvm.memory.barrier(i1 %loadload, i1 %loadstore, i1 %storeload, i1 %storestore, i1 %device) define internal void @__memory_barrier() nounwind readnone alwaysinline { ;; see http://llvm.org/bugs/show_bug.cgi?id=2829. It seems like we ;; only get an MFENCE on x86 if "device" is true, but IMHO we should ;; in the case where the first 4 args are true but it is false. ;; So we just always set that to true... call void @llvm.memory.barrier(i1 true, i1 true, i1 true, i1 true, i1 true) ret void } global_atomic($1, add, i32, int32) global_atomic($1, sub, i32, int32) global_atomic($1, and, i32, int32) global_atomic($1, or, i32, int32) global_atomic($1, xor, i32, int32) global_atomic($1, min, i32, int32) global_atomic($1, max, i32, int32) global_atomic($1, umin, i32, uint32) global_atomic($1, umax, i32, uint32) global_atomic($1, add, i64, int64) global_atomic($1, sub, i64, int64) global_atomic($1, and, i64, int64) global_atomic($1, or, i64, int64) global_atomic($1, xor, i64, int64) global_atomic($1, min, i64, int64) global_atomic($1, max, i64, int64) global_atomic($1, umin, i64, uint64) global_atomic($1, umax, i64, uint64) global_swap($1, i32, int32) global_swap($1, i64, int64) global_atomic_exchange($1, i32, int32) global_atomic_exchange($1, i64, int64) ') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Definitions of 8 and 16-bit load and store functions ;; ;; The `int8_16' macro defines functions related to loading and storing 8 and ;; 16-bit values in memory, converting to and from i32. (This is a workaround ;; to be able to use in-memory values of types in ispc programs, since the ;; compiler doesn't yet support 8 and 16-bit datatypes... ;; ;; Arguments to pass to `int8_16': ;; $1: vector width of the target define(`int8_16', ` define internal <$1 x i32> @__load_uint8([0 x i32] *, i32 %offset, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %doload, label %skip doload: %ptr8 = bitcast [0 x i32] *%0 to i8 * %ptr = getelementptr i8 * %ptr8, i32 %offset %ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) * %val = load i`'eval(8*$1) * %ptr64, align 1 %vval = bitcast i`'eval(8*$1) %val to <$1 x i8> ; unsigned, so zero-extend to i32... %ret = zext <$1 x i8> %vval to <$1 x i32> ret <$1 x i32> %ret skip: ret <$1 x i32> undef } define internal <$1 x i32> @__load_int8([0 x i32] *, i32 %offset, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %doload, label %skip doload: %ptr8 = bitcast [0 x i32] *%0 to i8 * %ptr = getelementptr i8 * %ptr8, i32 %offset %ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) * %val = load i`'eval(8*$1) * %ptr64, align 1 %vval = bitcast i`'eval(8*$1) %val to <$1 x i8> ; signed, so sign-extend to i32... %ret = sext <$1 x i8> %vval to <$1 x i32> ret <$1 x i32> %ret skip: ret <$1 x i32> undef } define internal <$1 x i32> @__load_uint16([0 x i32] *, i32 %offset, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %doload, label %skip doload: %ptr16 = bitcast [0 x i32] *%0 to i16 * %ptr = getelementptr i16 * %ptr16, i32 %offset %ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) * %val = load i`'eval(16*$1) * %ptr64, align 2 %vval = bitcast i`'eval(16*$1) %val to <$1 x i16> ; unsigned, so use zero-extend... %ret = zext <$1 x i16> %vval to <$1 x i32> ret <$1 x i32> %ret skip: ret <$1 x i32> undef } define internal <$1 x i32> @__load_int16([0 x i32] *, i32 %offset, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %doload, label %skip doload: %ptr16 = bitcast [0 x i32] *%0 to i16 * %ptr = getelementptr i16 * %ptr16, i32 %offset %ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) * %val = load i`'eval(16*$1) * %ptr64, align 2 %vval = bitcast i`'eval(16*$1) %val to <$1 x i16> ; signed, so use sign-extend... %ret = sext <$1 x i16> %vval to <$1 x i32> ret <$1 x i32> %ret skip: ret <$1 x i32> undef } define internal void @__store_int8([0 x i32] *, i32 %offset, <$1 x i32> %val32, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %dostore, label %skip dostore: %val = trunc <$1 x i32> %val32 to <$1 x i8> %val64 = bitcast <$1 x i8> %val to i`'eval(8*$1) %mask8 = trunc <$1 x i32> %mask to <$1 x i8> %mask64 = bitcast <$1 x i8> %mask8 to i`'eval(8*$1) %notmask = xor i`'eval(8*$1) %mask64, -1 %ptr8 = bitcast [0 x i32] *%0 to i8 * %ptr = getelementptr i8 * %ptr8, i32 %offset %ptr64 = bitcast i8 * %ptr to i`'eval(8*$1) * ;; load the old value, use logical ops to blend based on the mask, then ;; store the result back %old = load i`'eval(8*$1) * %ptr64, align 1 %oldmasked = and i`'eval(8*$1) %old, %notmask %newmasked = and i`'eval(8*$1) %val64, %mask64 %final = or i`'eval(8*$1) %oldmasked, %newmasked store i`'eval(8*$1) %final, i`'eval(8*$1) * %ptr64, align 1 ret void skip: ret void } define internal void @__store_int16([0 x i32] *, i32 %offset, <$1 x i32> %val32, <$1 x i32> %mask) nounwind alwaysinline { %mm = call i32 @__movmsk(<$1 x i32> %mask) %any = icmp ne i32 %mm, 0 br i1 %any, label %dostore, label %skip dostore: %val = trunc <$1 x i32> %val32 to <$1 x i16> %val64 = bitcast <$1 x i16> %val to i`'eval(16*$1) %mask8 = trunc <$1 x i32> %mask to <$1 x i16> %mask64 = bitcast <$1 x i16> %mask8 to i`'eval(16*$1) %notmask = xor i`'eval(16*$1) %mask64, -1 %ptr16 = bitcast [0 x i32] *%0 to i16 * %ptr = getelementptr i16 * %ptr16, i32 %offset %ptr64 = bitcast i16 * %ptr to i`'eval(16*$1) * ;; as above, use mask to do blending with logical ops... %old = load i`'eval(16*$1) * %ptr64, align 2 %oldmasked = and i`'eval(16*$1) %old, %notmask %newmasked = and i`'eval(16*$1) %val64, %mask64 %final = or i`'eval(16*$1) %oldmasked, %newmasked store i`'eval(16*$1) %final, i`'eval(16*$1) * %ptr64, align 2 ret void skip: ret void } ' ) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; packed load and store functions ;; ;; These define functions to emulate those nice packed load and packed store ;; instructions. For packed store, given a pointer to destination array and ;; an offset into the array, for each lane where the mask is on, the ;; corresponding value for that lane is stored into packed locations in the ;; destination array. For packed load, each lane that has an active mask ;; loads a sequential value from the array. ;; ;; $1: vector width of the target ;; ;; FIXME: use the per_lane macro, defined below, to implement these! define(`packed_load_and_store', ` define i32 @__packed_load_active([0 x i32] *, i32 %start_offset, <$1 x i32> * %val_ptr, <$1 x i32> %full_mask) nounwind alwaysinline { entry: %mask = call i32 @__movmsk(<$1 x i32> %full_mask) %baseptr = bitcast [0 x i32] * %0 to i32 * %startptr = getelementptr i32 * %baseptr, i32 %start_offset %mask_known = call i1 @__is_compile_time_constant_mask(<$1 x i32> %full_mask) br i1 %mask_known, label %known_mask, label %unknown_mask known_mask: %allon = icmp eq i32 %mask, eval((1 << $1) -1) br i1 %allon, label %all_on, label %not_all_on all_on: ;; everyone wants to load, so just load an entire vector width in a single ;; vector load %vecptr = bitcast i32 *%startptr to <$1 x i32> * %vec_load = load <$1 x i32> *%vecptr, align 4 store <$1 x i32> %vec_load, <$1 x i32> * %val_ptr, align 4 ret i32 $1 not_all_on: %alloff = icmp eq i32 %mask, 0 br i1 %alloff, label %all_off, label %unknown_mask all_off: ;; no one wants to load ret i32 0 unknown_mask: br label %loop loop: %lane = phi i32 [ 0, %unknown_mask ], [ %nextlane, %loopend ] %lanemask = phi i32 [ 1, %unknown_mask ], [ %nextlanemask, %loopend ] %offset = phi i32 [ 0, %unknown_mask ], [ %nextoffset, %loopend ] ; is the current lane on? %and = and i32 %mask, %lanemask %do_load = icmp eq i32 %and, %lanemask br i1 %do_load, label %load, label %loopend load: %loadptr = getelementptr i32 *%startptr, i32 %offset %loadval = load i32 *%loadptr %val_ptr_i32 = bitcast <$1 x i32> * %val_ptr to i32 * %storeptr = getelementptr i32 *%val_ptr_i32, i32 %lane store i32 %loadval, i32 *%storeptr %offset1 = add i32 %offset, 1 br label %loopend loopend: %nextoffset = phi i32 [ %offset1, %load ], [ %offset, %loop ] %nextlane = add i32 %lane, 1 %nextlanemask = mul i32 %lanemask, 2 ; are we done yet? %test = icmp ne i32 %nextlane, $1 br i1 %test, label %loop, label %done done: ret i32 %nextoffset } define i32 @__packed_store_active([0 x i32] *, i32 %start_offset, <$1 x i32> %vals, <$1 x i32> %full_mask) nounwind alwaysinline { entry: %mask = call i32 @__movmsk(<$1 x i32> %full_mask) %baseptr = bitcast [0 x i32] * %0 to i32 * %startptr = getelementptr i32 * %baseptr, i32 %start_offset %mask_known = call i1 @__is_compile_time_constant_mask(<$1 x i32> %full_mask) br i1 %mask_known, label %known_mask, label %unknown_mask known_mask: %allon = icmp eq i32 %mask, eval((1 << $1) -1) br i1 %allon, label %all_on, label %not_all_on all_on: %vecptr = bitcast i32 *%startptr to <$1 x i32> * store <$1 x i32> %vals, <$1 x i32> * %vecptr, align 4 ret i32 $1 not_all_on: %alloff = icmp eq i32 %mask, 0 br i1 %alloff, label %all_off, label %unknown_mask all_off: ret i32 0 unknown_mask: br label %loop loop: %lane = phi i32 [ 0, %unknown_mask ], [ %nextlane, %loopend ] %lanemask = phi i32 [ 1, %unknown_mask ], [ %nextlanemask, %loopend ] %offset = phi i32 [ 0, %unknown_mask ], [ %nextoffset, %loopend ] ; is the current lane on? %and = and i32 %mask, %lanemask %do_store = icmp eq i32 %and, %lanemask br i1 %do_store, label %store, label %loopend store: %storeval = extractelement <$1 x i32> %vals, i32 %lane %storeptr = getelementptr i32 *%startptr, i32 %offset store i32 %storeval, i32 *%storeptr %offset1 = add i32 %offset, 1 br label %loopend loopend: %nextoffset = phi i32 [ %offset1, %store ], [ %offset, %loop ] %nextlane = add i32 %lane, 1 %nextlanemask = mul i32 %lanemask, 2 ; are we done yet? %test = icmp ne i32 %nextlane, $1 br i1 %test, label %loop, label %done done: ret i32 %nextoffset } ') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; per_lane ;; ;; The scary macro below encapsulates the 'scalarization' idiom--i.e. we have ;; some operation that we'd like to perform only for the lanes where the ;; mask is on ;; $1: vector width of the target ;; $2: variable that holds the mask ;; $3: block of code to run for each lane that is on ;; Inside this code, any instances of the text "LANE" are replaced ;; with an i32 value that represents the current lane number ; num lanes, mask, code block to do per lane define(`per_lane', ` br label %pl_entry pl_entry: %pl_mask = call i32 @__movmsk($2) %pl_mask_known = call i1 @__is_compile_time_constant_mask($2) br i1 %pl_mask_known, label %pl_known_mask, label %pl_unknown_mask pl_known_mask: ;; the mask is known at compile time; see if it is something we can ;; handle more efficiently %pl_is_allon = icmp eq i32 %pl_mask, eval((1<<$1)-1) br i1 %pl_is_allon, label %pl_all_on, label %pl_not_all_on pl_all_on: ;; the mask is all on--just expand the code for each lane sequentially forloop(i, 0, eval($1-1), `patsubst(`$3', `ID\|LANE', i)') br label %pl_done pl_not_all_on: ;; not all on--see if it is all off or mixed ;; for the mixed case, we just run the general case, though we could ;; try to be smart and just emit the code based on what it actually is, ;; for example by emitting the code straight-line without a loop and doing ;; the lane tests explicitly, leaving later optimization passes to eliminate ;; the stuff that is definitely not needed. Not clear if we will frequently ;; encounter a mask that is known at compile-time but is not either all on or ;; all off... %pl_alloff = icmp eq i32 %pl_mask, 0 br i1 %pl_alloff, label %pl_done, label %pl_unknown_mask pl_unknown_mask: br label %pl_loop pl_loop: ;; Loop over each lane and see if we want to do the work for this lane %pl_lane = phi i32 [ 0, %pl_unknown_mask ], [ %pl_nextlane, %pl_loopend ] %pl_lanemask = phi i32 [ 1, %pl_unknown_mask ], [ %pl_nextlanemask, %pl_loopend ] ; is the current lane on? if so, goto do work, otherwise to end of loop %pl_and = and i32 %pl_mask, %pl_lanemask %pl_doit = icmp eq i32 %pl_and, %pl_lanemask br i1 %pl_doit, label %pl_dolane, label %pl_loopend pl_dolane: ;; If so, substitute in the code from the caller and replace the LANE ;; stuff with the current lane number patsubst(`patsubst(`$3', `LANE_ID', `_id')', `LANE', `%pl_lane') br label %pl_loopend pl_loopend: %pl_nextlane = add i32 %pl_lane, 1 %pl_nextlanemask = mul i32 %pl_lanemask, 2 ; are we done yet? %pl_test = icmp ne i32 %pl_nextlane, $1 br i1 %pl_test, label %pl_loop, label %pl_done pl_done: ') ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather ;; ;; $1: vector width of the target ;; $2: scalar type for which to generate functions to do gathers ; vec width, type define(`gen_gather', ` ;; Define the utility function to do the gather operation for a single element ;; of the type define internal <$1 x $2> @__gather_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %ret, i32 %lane) nounwind readonly alwaysinline { ; compute address for this one from the base %offset32 = extractelement <$1 x i32> %offsets, i32 %lane %offset64 = zext i32 %offset32 to i64 %ptrdelta = add i64 %ptr64, %offset64 %ptr = inttoptr i64 %ptrdelta to $2 * ; load value and insert into returned value %val = load $2 *%ptr %updatedret = insertelement <$1 x $2> %ret, $2 %val, i32 %lane ret <$1 x $2> %updatedret } define <$1 x $2> @__gather_base_offsets_$2(i8*, <$1 x i32> %offsets, <$1 x i32> %vecmask) nounwind readonly alwaysinline { entry: %mask = call i32 @__movmsk(<$1 x i32> %vecmask) %ptr64 = ptrtoint i8 * %0 to i64 %maskKnown = call i1 @__is_compile_time_constant_mask(<$1 x i32> %vecmask) br i1 %maskKnown, label %known_mask, label %unknown_mask known_mask: %alloff = icmp eq i32 %mask, 0 br i1 %alloff, label %gather_all_off, label %unknown_mask gather_all_off: ret <$1 x $2> undef unknown_mask: ; We can be clever and avoid the per-lane stuff for gathers if we are willing ; to require that the 0th element of the array being gathered from is always ; legal to read from (and we do indeed require that, given the benefits!) ; ; Set the offset to zero for lanes that are off %offsetsPtr = alloca <$1 x i32> store <$1 x i32> zeroinitializer, <$1 x i32> * %offsetsPtr call void @__masked_store_blend_32(<$1 x i32> * %offsetsPtr, <$1 x i32> %offsets, <$1 x i32> %vecmask) %newOffsets = load <$1 x i32> * %offsetsPtr %ret0 = call <$1 x $2> @__gather_elt_$2(i64 %ptr64, <$1 x i32> %newOffsets, <$1 x $2> undef, i32 0) forloop(lane, 1, eval($1-1), `patsubst(patsubst(`%retLANE = call <$1 x $2> @__gather_elt_$2(i64 %ptr64, <$1 x i32> %newOffsets, <$1 x $2> %retPREV, i32 LANE) ', `LANE', lane), `PREV', eval(lane-1))') ret <$1 x $2> %ret`'eval($1-1) } ' ) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gen_scatter ;; Emit a function declaration for a scalarized scatter. ;; ;; $1: target vector width ;; $2: scalar type for which we want to generate code to scatter define(`gen_scatter', ` ;; Define the function that descripes the work to do to scatter a single ;; value define internal void @__scatter_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %values, i32 %lane) nounwind alwaysinline { %offset32 = extractelement <$1 x i32> %offsets, i32 %lane %offset64 = zext i32 %offset32 to i64 %ptrdelta = add i64 %ptr64, %offset64 %ptr = inttoptr i64 %ptrdelta to $2 * %storeval = extractelement <$1 x $2> %values, i32 %lane store $2 %storeval, $2 * %ptr ret void } define void @__scatter_base_offsets_$2(i8* %base, <$1 x i32> %offsets, <$1 x $2> %values, <$1 x i32> %mask) nounwind alwaysinline { ;; And use the `per_lane' macro to do all of the per-lane work for scatter... %ptr64 = ptrtoint i8 * %base to i64 per_lane($1, <$1 x i32> %mask, ` call void @__scatter_elt_$2(i64 %ptr64, <$1 x i32> %offsets, <$1 x $2> %values, i32 LANE)') ret void } ' )