/* Copyright (c) 2010-2011, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifdef _MSC_VER #define _CRT_SECURE_NO_WARNINGS #define NOMINMAX #pragma warning (disable: 4244) #pragma warning (disable: 4305) #endif #include #include #include #include #ifdef __linux__ #include #endif #include #include #include #include #include //#include "ao1_ispc.h" //using namespace ispc; #include "../timing.h" #include static inline double rtc(void) { struct timeval Tvalue; double etime; struct timezone dummy; gettimeofday(&Tvalue,&dummy); etime = (double) Tvalue.tv_sec + 1.e-6*((double) Tvalue.tv_usec); return etime; } /******************************/ #include #include #include #include "drvapi_error_string.h" #define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__) // These are the inline versions for all of the SDK helper functions void __checkCudaErrors(CUresult err, const char *file, const int line) { if(CUDA_SUCCESS != err) { std::cerr << "checkCudeErrors() Driver API error = " << err << "\"" << getCudaDrvErrorString(err) << "\" from file <" << file << ", line " << line << "\n"; exit(-1); } } /**********************/ /* Basic CUDriver API */ CUcontext context; void createContext(const int deviceId = 0) { CUdevice device; int devCount; checkCudaErrors(cuInit(0)); checkCudaErrors(cuDeviceGetCount(&devCount)); assert(devCount > 0); checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0)); char name[128]; checkCudaErrors(cuDeviceGetName(name, 128, device)); std::cout << "Using CUDA Device [0]: " << name << "\n"; int devMajor, devMinor; checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device)); std::cout << "Device Compute Capability: " << devMajor << "." << devMinor << "\n"; if (devMajor < 2) { std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n"; exit(1); } // Create driver context checkCudaErrors(cuCtxCreate(&context, 0, device)); } void destroyContext() { checkCudaErrors(cuCtxDestroy(context)); } CUmodule loadModule(const char * module) { const double t0 = rtc(); CUmodule cudaModule; // in this branch we use compilation with parameters #if 0 unsigned int jitNumOptions = 1; CUjit_option *jitOptions = new CUjit_option[jitNumOptions]; void **jitOptVals = new void*[jitNumOptions]; // set up pointer to set the Maximum # of registers for a particular kernel jitOptions[0] = CU_JIT_MAX_REGISTERS; int jitRegCount = 64; jitOptVals[0] = (void *)(size_t)jitRegCount; #if 0 { jitNumOptions = 3; // set up size of compilation log buffer jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES; int jitLogBufferSize = 1024; jitOptVals[0] = (void *)(size_t)jitLogBufferSize; // set up pointer to the compilation log buffer jitOptions[1] = CU_JIT_INFO_LOG_BUFFER; char *jitLogBuffer = new char[jitLogBufferSize]; jitOptVals[1] = jitLogBuffer; // set up pointer to set the Maximum # of registers for a particular kernel jitOptions[2] = CU_JIT_MAX_REGISTERS; int jitRegCount = 32; jitOptVals[2] = (void *)(size_t)jitRegCount; } #endif checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals)); #else CUlinkState CUState; CUlinkState *lState = &CUState; const int nOptions = 7; CUjit_option options[nOptions]; void* optionVals[nOptions]; float walltime; const unsigned int logSize = 32768; char error_log[logSize], info_log[logSize]; void *cuOut; size_t outSize; int myErr = 0; // Setup linker options // Return walltime from JIT compilation options[0] = CU_JIT_WALL_TIME; optionVals[0] = (void*) &walltime; // Pass a buffer for info messages options[1] = CU_JIT_INFO_LOG_BUFFER; optionVals[1] = (void*) info_log; // Pass the size of the info buffer options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES; optionVals[2] = (void*) logSize; // Pass a buffer for error message options[3] = CU_JIT_ERROR_LOG_BUFFER; optionVals[3] = (void*) error_log; // Pass the size of the error buffer options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES; optionVals[4] = (void*) logSize; // Make the linker verbose options[5] = CU_JIT_LOG_VERBOSE; optionVals[5] = (void*) 1; // Max # of registers/pthread options[6] = CU_JIT_MAX_REGISTERS; int jitRegCount = 64; optionVals[6] = (void *)(size_t)jitRegCount; // Create a pending linker invocation checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState)); #if 0 if (sizeof(void *)==4) { // Load the PTX from the string myPtx32 printf("Loading myPtx32[] program\n"); // PTX May also be loaded from file, as per below. myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0); } else #endif { // Load the PTX from the string myPtx (64-bit) fprintf(stderr, "Loading ptx..\n"); myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0); myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0); // PTX May also be loaded from file, as per below. // myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0); } // Complete the linker step myErr = cuLinkComplete(*lState, &cuOut, &outSize); if ( myErr != CUDA_SUCCESS ) { // Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above. fprintf(stderr,"PTX Linker Error:\n%s\n",error_log); assert(0); } // Linker walltime and info_log were requested in options above. fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0)); // Load resulting cuBin into module checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut)); // Destroy the linker invocation checkCudaErrors(cuLinkDestroy(*lState)); #endif fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0)); return cudaModule; } void unloadModule(CUmodule &cudaModule) { checkCudaErrors(cuModuleUnload(cudaModule)); } CUfunction getFunction(CUmodule &cudaModule, const char * function) { CUfunction cudaFunction; checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function)); return cudaFunction; } CUdeviceptr deviceMalloc(const size_t size) { CUdeviceptr d_buf; checkCudaErrors(cuMemAllocManaged(&d_buf, size, CU_MEM_ATTACH_GLOBAL)); return d_buf; } void deviceFree(CUdeviceptr d_buf) { checkCudaErrors(cuMemFree(d_buf)); } void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size) { checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size)); } void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size) { checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size)); } #define deviceLaunch(func,params) \ checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \ checkCudaErrors( \ cuLaunchKernel( \ (func), \ 1,1,1, \ 32, 1, 1, \ 0, NULL, (params), NULL \ )); typedef CUdeviceptr devicePtr; /**************/ #include std::vector readBinary(const char * filename) { std::vector buffer; FILE *fp = fopen(filename, "rb"); if (!fp ) { fprintf(stderr, "file %s not found\n", filename); assert(0); } #if 0 char c; while ((c = fgetc(fp)) != EOF) buffer.push_back(c); #else fseek(fp, 0, SEEK_END); const unsigned long long size = ftell(fp); /*calc the size needed*/ fseek(fp, 0, SEEK_SET); buffer.resize(size); if (fp == NULL){ /*ERROR detection if file == empty*/ fprintf(stderr, "Error: There was an Error reading the file %s \n",filename); exit(1); } else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/ fprintf(stderr, "Error: There was an Error reading the file %s \n", filename); exit(1); } #endif fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size()); return buffer; } extern "C" { void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment) { return NULL; } double CUDALaunch( void **handlePtr, const char * func_name, void **func_args) { const std::vector module_str = readBinary("__kernels.ptx"); const char * module = &module_str[0]; CUmodule cudaModule = loadModule(module); CUfunction cudaFunction = getFunction(cudaModule, func_name); const double t0 = rtc(); deviceLaunch(cudaFunction, func_args); checkCudaErrors(cuStreamSynchronize(0)); const double dt = rtc() - t0; unloadModule(cudaModule); return dt; } void CUDASync(void *handle) { checkCudaErrors(cuStreamSynchronize(0)); } void ISPCSync(void *handle) { checkCudaErrors(cuStreamSynchronize(0)); } void CUDAFree(void *handle) { } } /******************************/ #define NSUBSAMPLES 2 extern void ao_serial(int w, int h, int nsubsamples, float image[]); static unsigned int test_iterations; static unsigned int width, height; static unsigned char *img; static float *fimg; static unsigned char clamp(float f) { int i = (int)(f * 255.5); if (i < 0) i = 0; if (i > 255) i = 255; return (unsigned char)i; } static void savePPM(const char *fname, int w, int h) { for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { img[3 * (y * w + x) + 0] = clamp(fimg[3 *(y * w + x) + 0]); img[3 * (y * w + x) + 1] = clamp(fimg[3 *(y * w + x) + 1]); img[3 * (y * w + x) + 2] = clamp(fimg[3 *(y * w + x) + 2]); } } FILE *fp = fopen(fname, "wb"); if (!fp) { perror(fname); exit(1); } fprintf(fp, "P6\n"); fprintf(fp, "%d %d\n", w, h); fprintf(fp, "255\n"); fwrite(img, w * h * 3, 1, fp); fclose(fp); printf("Wrote image file %s\n", fname); } int main(int argc, char **argv) { if (argc != 4) { printf ("%s\n", argv[0]); printf ("Usage: ao [num test iterations] [width] [height]\n"); getchar(); exit(-1); } else { test_iterations = atoi(argv[1]); width = atoi (argv[2]); height = atoi (argv[3]); } // Allocate space for output images img = new unsigned char[width * height * 3]; fimg = new float[width * height * 3]; // // Run the ispc path, test_iterations times, and report the minimum // time for any of them. // double minTimeISPC = 1e30; #if 0 for (unsigned int i = 0; i < test_iterations; i++) { memset((void *)fimg, 0, sizeof(float) * width * height * 3); assert(NSUBSAMPLES == 2); reset_and_start_timer(); ao_ispc(width, height, NSUBSAMPLES, fimg); double t = get_elapsed_mcycles(); minTimeISPC = std::min(minTimeISPC, t); } // Report results and save image printf("[aobench ispc]:\t\t\t[%.3f] million cycles (%d x %d image)\n", minTimeISPC, width, height); savePPM("ao-ispc.ppm", width, height); #endif /*******************/ createContext(); /*******************/ devicePtr d_fimg = deviceMalloc(width*height*3*sizeof(float)); // // Run the ispc + tasks path, test_iterations times, and report the // minimum time for any of them. // double minTimeISPCTasks = 1e30; for (unsigned int i = 0; i < test_iterations; i++) { memset((void *)fimg, 0, sizeof(float) * width * height * 3); assert(NSUBSAMPLES == 2); memcpyH2D(d_fimg, fimg, width*height*3*sizeof(float)); reset_and_start_timer(); #if 0 const double t0 = rtc(); ao_ispc_tasks( width, height, NSUBSAMPLES, (float*)d_fimg); // double t = (rtc() - t0); //get_elapsed_mcycles(); #else const char * func_name = "ao_ispc_tasks"; int arg_1 = width; int arg_2 = height; int arg_3 = NSUBSAMPLES; void *func_args[] = {&arg_1, &arg_2, &arg_3, (float*)&d_fimg}; const double t = CUDALaunch(NULL, func_name, func_args); #endif minTimeISPCTasks = std::min(minTimeISPCTasks, t); } memcpyD2H(fimg, d_fimg, width*height*3*sizeof(float)); // Report results and save image printf("[aobench ispc + tasks]:\t\t[%.3f] million cycles (%d x %d image)\n", minTimeISPCTasks, width, height); savePPM("ao-cuda.ppm", width, height); /*******************/ destroyContext(); /*******************/ return 0; // // Run the serial path, again test_iteration times, and report the // minimum time. // double minTimeSerial = 1e30; for (unsigned int i = 0; i < test_iterations; i++) { memset((void *)fimg, 0, sizeof(float) * width * height * 3); reset_and_start_timer(); ao_serial(width, height, NSUBSAMPLES, fimg); double t = get_elapsed_mcycles(); minTimeSerial = std::min(minTimeSerial, t); } // Report more results, save another image... printf("[aobench serial]:\t\t[%.3f] million cycles (%d x %d image)\n", minTimeSerial, width, height); printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n", minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCTasks); savePPM("ao-serial.ppm", width, height); return 0; }