;; Copyright (c) 2010-2011, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;; This file defines the target for "double-pumped" SSE4, i.e. running ;; with 8-wide vectors ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; standard 8-wide definitions from m4 macros stdlib_core(8) packed_load_and_store(8) scans(8) int64minmax(8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <4 x float> @llvm.x86.sse.rcp.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone define internal <8 x float> @__rcp_varying_float(<8 x float>) nounwind readonly alwaysinline { ; float iv = __rcp_v(v); ; return iv * (2. - v * iv); unary4to8(call, float, @llvm.x86.sse.rcp.ps, %0) ; do one N-R iteration %v_iv = fmul <8 x float> %0, %call %two_minus = fsub <8 x float> , %v_iv %iv_mul = fmul <8 x float> %call, %two_minus ret <8 x float> %iv_mul } define internal float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; uniform float iv = extract(__rcp_u(v), 0); ; return iv * (2. - v * iv); %vecval = insertelement <4 x float> undef, float %0, i32 0 %call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval) %scall = extractelement <4 x float> %call, i32 0 ; do one N-R iteration %v_iv = fmul float %0, %scall %two_minus = fsub float 2., %v_iv %iv_mul = fmul float %scall, %two_minus ret float %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rsqrt declare <4 x float> @llvm.x86.sse.rsqrt.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone define internal <8 x float> @__rsqrt_varying_float(<8 x float> %v) nounwind readonly alwaysinline { ; float is = __rsqrt_v(v); unary4to8(is, float, @llvm.x86.sse.rsqrt.ps, %v) ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul <8 x float> %v, %is %v_is_is = fmul <8 x float> %v_is, %is %three_sub = fsub <8 x float> , %v_is_is %is_mul = fmul <8 x float> %is, %three_sub %half_scale = fmul <8 x float> , %is_mul ret <8 x float> %half_scale } define internal float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { ; uniform float is = extract(__rsqrt_u(v), 0); %v = insertelement <4 x float> undef, float %0, i32 0 %vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v) %is = extractelement <4 x float> %vis, i32 0 ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul float %0, %is %v_is_is = fmul float %v_is, %is %three_sub = fsub float 3., %v_is_is %is_mul = fmul float %is, %three_sub %half_scale = fmul float 0.5, %is_mul ret float %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sqrt declare <4 x float> @llvm.x86.sse.sqrt.ps(<4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone define internal <8 x float> @__sqrt_varying_float(<8 x float>) nounwind readonly alwaysinline { unary4to8(call, float, @llvm.x86.sse.sqrt.ps, %0) ret <8 x float> %call } define internal float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; fast math declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind define internal void @__fastmath() nounwind alwaysinline { %ptr = alloca i32 %ptr8 = bitcast i32 * %ptr to i8 * call void @llvm.x86.sse.stmxcsr(i8 * %ptr8) %oldval = load i32 *%ptr ; turn on DAZ (64)/FTZ (32768) -> 32832 %update = or i32 %oldval, 32832 store i32 %update, i32 *%ptr call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; svml stuff declare <4 x float> @__svml_sinf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_cosf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_sincosf4(<4 x float> *, <4 x float>) nounwind readnone declare <4 x float> @__svml_tanf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_atanf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_atan2f4(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @__svml_expf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_logf4(<4 x float>) nounwind readnone declare <4 x float> @__svml_powf4(<4 x float>, <4 x float>) nounwind readnone define internal <8 x float> @__svml_sin(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_sinf4, %0) ret <8 x float> %ret } define internal <8 x float> @__svml_cos(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_cosf4, %0) ret <8 x float> %ret } define internal void @__svml_sincos(<8 x float>, <8 x float> *, <8 x float> *) nounwind readnone alwaysinline { ; call svml_sincosf4 two times with the two 4-wide sub-vectors %a = shufflevector <8 x float> %0, <8 x float> undef, <4 x i32> %b = shufflevector <8 x float> %0, <8 x float> undef, <4 x i32> %cospa = alloca <4 x float> %sa = call <4 x float> @__svml_sincosf4(<4 x float> * %cospa, <4 x float> %a) %cospb = alloca <4 x float> %sb = call <4 x float> @__svml_sincosf4(<4 x float> * %cospb, <4 x float> %b) %sin = shufflevector <4 x float> %sa, <4 x float> %sb, <8 x i32> store <8 x float> %sin, <8 x float> * %1 %cosa = load <4 x float> * %cospa %cosb = load <4 x float> * %cospb %cos = shufflevector <4 x float> %cosa, <4 x float> %cosb, <8 x i32> store <8 x float> %cos, <8 x float> * %2 ret void } define internal <8 x float> @__svml_tan(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_tanf4, %0) ret <8 x float> %ret } define internal <8 x float> @__svml_atan(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_atanf4, %0) ret <8 x float> %ret } define internal <8 x float> @__svml_atan2(<8 x float>, <8 x float>) nounwind readnone alwaysinline { binary4to8(ret, float, @__svml_atan2f4, %0, %1) ret <8 x float> %ret } define internal <8 x float> @__svml_exp(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_expf4, %0) ret <8 x float> %ret } define internal <8 x float> @__svml_log(<8 x float>) nounwind readnone alwaysinline { unary4to8(ret, float, @__svml_logf4, %0) ret <8 x float> %ret } define internal <8 x float> @__svml_pow(<8 x float>, <8 x float>) nounwind readnone alwaysinline { binary4to8(ret, float, @__svml_powf4, %0, %1) ret <8 x float> %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <4 x float> @llvm.x86.sse.max.ps(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ps(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone define internal <8 x float> @__max_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { binary4to8(call, float, @llvm.x86.sse.max.ps, %0, %1) ret <8 x float> %call } define internal float @__max_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1) ret float %ret } define internal <8 x float> @__min_varying_float(<8 x float>, <8 x float>) nounwind readonly alwaysinline { binary4to8(call, float, @llvm.x86.sse.min.ps, %0, %1) ret <8 x float> %call } define internal float @__min_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int32 min/max declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone define internal <8 x i32> @__min_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { binary4to8(call, i32, @llvm.x86.sse41.pminsd, %0, %1) ret <8 x i32> %call } define internal i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1) ret i32 %ret } define internal <8 x i32> @__max_varying_int32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { binary4to8(call, i32, @llvm.x86.sse41.pmaxsd, %0, %1) ret <8 x i32> %call } define internal i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; unsigned int min/max declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone define internal <8 x i32> @__min_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { binary4to8(call, i32, @llvm.x86.sse41.pminud, %0, %1) ret <8 x i32> %call } define internal i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1) ret i32 %ret } define internal <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly alwaysinline { binary4to8(call, i32, @llvm.x86.sse41.pmaxud, %0, %1) ret <8 x i32> %call } define internal i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions declare i32 @llvm.x86.sse.movmsk.ps(<4 x float>) nounwind readnone define internal i32 @__movmsk(<8 x i32>) nounwind readnone alwaysinline { ; first do two 4-wide movmsk calls %floatmask = bitcast <8 x i32> %0 to <8 x float> %m0 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v0 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m0) nounwind readnone %m1 = shufflevector <8 x float> %floatmask, <8 x float> undef, <4 x i32> %v1 = call i32 @llvm.x86.sse.movmsk.ps(<4 x float> %m1) nounwind readnone ; and shift the first one over by 4 before ORing it with the value ; of the second one %v1s = shl i32 %v1, 4 %v = or i32 %v0, %v1s ret i32 %v } define internal float @__reduce_min_float(<8 x float>) nounwind readnone alwaysinline { reduce8by4(float, @llvm.x86.sse.min.ps, @__min_uniform_float) } define internal float @__reduce_max_float(<8 x float>) nounwind readnone alwaysinline { reduce8by4(float, @llvm.x86.sse.max.ps, @__max_uniform_float) } ; helper function for reduce_add_int32 define internal <4 x i32> @__vec4_add_int32(<4 x i32> %v0, <4 x i32> %v1) nounwind readnone alwaysinline { %v = add <4 x i32> %v0, %v1 ret <4 x i32> %v } ; helper function for reduce_add_int32 define internal i32 @__add_int32(i32, i32) nounwind readnone alwaysinline { %v = add i32 %0, %1 ret i32 %v } define internal i32 @__reduce_add_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @__vec4_add_int32, @__add_int32) } define internal i32 @__reduce_min_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @llvm.x86.sse41.pminsd, @__min_uniform_int32) } define internal i32 @__reduce_max_int32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @llvm.x86.sse41.pmaxsd, @__max_uniform_int32) } define internal i32 @__reduce_add_uint32(<8 x i32> %v) nounwind readnone alwaysinline { %r = call i32 @__reduce_add_int32(<8 x i32> %v) ret i32 %r } define internal i32 @__reduce_min_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @llvm.x86.sse41.pminud, @__min_uniform_uint32) } define internal i32 @__reduce_max_uint32(<8 x i32>) nounwind readnone alwaysinline { reduce8by4(i32, @llvm.x86.sse41.pmaxud, @__max_uniform_uint32) } define internal <4 x double> @__add_varying_double(<4 x double>, <4 x double>) nounwind readnone alwaysinline { %r = fadd <4 x double> %0, %1 ret <4 x double> %r } define internal double @__add_uniform_double(double, double) nounwind readnone alwaysinline { %r = fadd double %0, %1 ret double %r } define internal double @__reduce_add_double(<8 x double>) nounwind readnone { reduce8by4(double, @__add_varying_double, @__add_uniform_double) } define internal double @__reduce_min_double(<8 x double>) nounwind readnone { reduce8(double, @__min_varying_double, @__min_uniform_double) } define internal double @__reduce_max_double(<8 x double>) nounwind readnone { reduce8(double, @__max_varying_double, @__max_uniform_double) } define internal <4 x i64> @__add_varying_int64(<4 x i64>, <4 x i64>) nounwind readnone alwaysinline { %r = add <4 x i64> %0, %1 ret <4 x i64> %r } define internal i64 @__add_uniform_int64(i64, i64) nounwind readnone alwaysinline { %r = add i64 %0, %1 ret i64 %r } define internal i64 @__reduce_add_int64(<8 x i64>) nounwind readnone { reduce8by4(i64, @__add_varying_int64, @__add_uniform_int64) } define internal i64 @__reduce_min_int64(<8 x i64>) nounwind readnone { reduce8(i64, @__min_varying_int64, @__min_uniform_int64) } define internal i64 @__reduce_max_int64(<8 x i64>) nounwind readnone { reduce8(i64, @__max_varying_int64, @__max_uniform_int64) } define internal i64 @__reduce_min_uint64(<8 x i64>) nounwind readnone { reduce8(i64, @__min_varying_uint64, @__min_uniform_uint64) } define internal i64 @__reduce_max_uint64(<8 x i64>) nounwind readnone { reduce8(i64, @__max_varying_uint64, @__max_uniform_uint64) } reduce_equal(8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts load_and_broadcast(8, i8, 8) load_and_broadcast(8, i16, 16) load_and_broadcast(8, i32, 32) load_and_broadcast(8, i64, 64) load_masked(8, i8, 8, 1) load_masked(8, i16, 16, 2) load_masked(8, i32, 32, 4) load_masked(8, i64, 64, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter gen_gather(8, i8) gen_gather(8, i16) gen_gather(8, i32) gen_gather(8, i64) gen_scatter(8, i8) gen_scatter(8, i16) gen_scatter(8, i32) gen_scatter(8, i64) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float rounding declare <4 x float> @llvm.x86.sse41.round.ps(<4 x float>, i32) nounwind readnone declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone define internal <8 x float> @__round_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 round4to8(%0, 8) } define internal float @__round_uniform_float(float) nounwind readonly alwaysinline { ; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 ; the roundss intrinsic is a total mess--docs say: ; ; __m128 _mm_round_ss (__m128 a, __m128 b, const int c) ; ; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function ; on b0. The higher order 96 bits are copied directly from input parameter a. The ; return value is described by the following equations: ; ; r0 = RND(b0) ; r1 = a1 ; r2 = a2 ; r3 = a3 ; ; It doesn't matter what we pass as a, since we only need the r0 value ; here. So we pass the same register for both. %xi = insertelement <4 x float> undef, float %0, i32 0 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <8 x float> @__floor_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9 round4to8(%0, 9) } define internal float @__floor_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define internal <8 x float> @__ceil_varying_float(<8 x float>) nounwind readonly alwaysinline { ; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10 round4to8(%0, 10) } define internal float @__ceil_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding doubles declare <2 x double> @llvm.x86.sse41.round.pd(<2 x double>, i32) nounwind readnone declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone define internal <8 x double> @__round_varying_double(<8 x double>) nounwind readonly alwaysinline { round2to8double(%0, 8) } define internal double @__round_uniform_double(double) nounwind readonly alwaysinline { %xi = insertelement <2 x double> undef, double %0, i32 0 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define internal <8 x double> @__floor_varying_double(<8 x double>) nounwind readonly alwaysinline { ; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9 round2to8double(%0, 9) } define internal double @__floor_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundpd, round down 0b01 | don't signal precision exceptions 0b1001 = 9 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define internal <8 x double> @__ceil_varying_double(<8 x double>) nounwind readonly alwaysinline { ; roundpd, round up 0b10 | don't signal precision exceptions 0b1010 = 10 round2to8double(%0, 10) } define internal double @__ceil_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; horizontal ops / reductions declare i32 @llvm.ctpop.i32(i32) nounwind readnone define internal i32 @__popcnt_int32(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call } declare i64 @llvm.ctpop.i64(i64) nounwind readnone define internal i64 @__popcnt_int64(i64) nounwind readonly alwaysinline { %call = call i64 @llvm.ctpop.i64(i64 %0) ret i64 %call } declare <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float>, <4 x float>) nounwind readnone define internal float @__reduce_add_float(<8 x float>) nounwind readonly alwaysinline { %a = shufflevector <8 x float> %0, <8 x float> undef, <4 x i32> %b = shufflevector <8 x float> %0, <8 x float> undef, <4 x i32> %ab = fadd <4 x float> %a, %b %hab = call <4 x float> @llvm.x86.sse3.hadd.ps(<4 x float> %ab, <4 x float> %ab) %a_scalar = extractelement <4 x float> %hab, i32 0 %b_scalar = extractelement <4 x float> %hab, i32 1 %sum = fadd float %a_scalar, %b_scalar ret float %sum } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store gen_masked_store(8, i8, 8) gen_masked_store(8, i16, 16) gen_masked_store(8, i32, 32) gen_masked_store(8, i64, 64) masked_store_blend_8_16_by_8() declare <4 x float> @llvm.x86.sse41.blendvps(<4 x float>, <4 x float>, <4 x float>) nounwind readnone define void @__masked_store_blend_32(<8 x i32>* nocapture, <8 x i32>, <8 x i32> %mask) nounwind alwaysinline { ; do two 4-wide blends with blendvps %mask_as_float = bitcast <8 x i32> %mask to <8 x float> %mask_a = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> %mask_b = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> %oldValue = load <8 x i32>* %0, align 4 %oldAsFloat = bitcast <8 x i32> %oldValue to <8 x float> %newAsFloat = bitcast <8 x i32> %1 to <8 x float> %old_a = shufflevector <8 x float> %oldAsFloat, <8 x float> undef, <4 x i32> %old_b = shufflevector <8 x float> %oldAsFloat, <8 x float> undef, <4 x i32> %new_a = shufflevector <8 x float> %newAsFloat, <8 x float> undef, <4 x i32> %new_b = shufflevector <8 x float> %newAsFloat, <8 x float> undef, <4 x i32> %blend_a = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old_a, <4 x float> %new_a, <4 x float> %mask_a) %blend_b = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old_b, <4 x float> %new_b, <4 x float> %mask_b) %blend = shufflevector <4 x float> %blend_a, <4 x float> %blend_b, <8 x i32> %blendAsInt = bitcast <8 x float> %blend to <8 x i32> store <8 x i32> %blendAsInt, <8 x i32>* %0, align 4 ret void } define void @__masked_store_blend_64(<8 x i64>* nocapture %ptr, <8 x i64> %new, <8 x i32> %mask) nounwind alwaysinline { ; implement this as 4 blends of <4 x i32>s, which are actually bitcast ; <2 x i64>s... %mask_as_float = bitcast <8 x i32> %mask to <8 x float> %old = load <8 x i64>* %ptr, align 8 ; set up the first two 64-bit values %old01 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> %old01f = bitcast <2 x i64> %old01 to <4 x float> %new01 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> %new01f = bitcast <2 x i64> %new01 to <4 x float> ; compute mask--note that the values mask0 and mask1 are doubled-up %mask01 = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> ; and blend the two of them values %result01f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old01f, <4 x float> %new01f, <4 x float> %mask01) %result01 = bitcast <4 x float> %result01f to <2 x i64> ; and again %old23 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> %old23f = bitcast <2 x i64> %old23 to <4 x float> %new23 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> %new23f = bitcast <2 x i64> %new23 to <4 x float> %mask23 = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> %result23f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old23f, <4 x float> %new23f, <4 x float> %mask23) %result23 = bitcast <4 x float> %result23f to <2 x i64> %old45 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> %old45f = bitcast <2 x i64> %old45 to <4 x float> %new45 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> %new45f = bitcast <2 x i64> %new45 to <4 x float> %mask45 = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> %result45f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old45f, <4 x float> %new45f, <4 x float> %mask45) %result45 = bitcast <4 x float> %result45f to <2 x i64> %old67 = shufflevector <8 x i64> %old, <8 x i64> undef, <2 x i32> %old67f = bitcast <2 x i64> %old67 to <4 x float> %new67 = shufflevector <8 x i64> %new, <8 x i64> undef, <2 x i32> %new67f = bitcast <2 x i64> %new67 to <4 x float> %mask67 = shufflevector <8 x float> %mask_as_float, <8 x float> undef, <4 x i32> %result67f = call <4 x float> @llvm.x86.sse41.blendvps(<4 x float> %old67f, <4 x float> %new67f, <4 x float> %mask67) %result67 = bitcast <4 x float> %result67f to <2 x i64> %final0123 = shufflevector <2 x i64> %result01, <2 x i64> %result23, <4 x i32> %final4567 = shufflevector <2 x i64> %result45, <2 x i64> %result67, <4 x i32> %final = shufflevector <4 x i64> %final0123, <4 x i64> %final4567, <8 x i32> store <8 x i64> %final, <8 x i64> * %ptr, align 8 ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <2 x double> @llvm.x86.sse2.sqrt.pd(<2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone define internal <8 x double> @__sqrt_varying_double(<8 x double>) nounwind alwaysinline { unary2to8(ret, double, @llvm.x86.sse2.sqrt.pd, %0) ret <8 x double> %ret } define internal double @__sqrt_uniform_double(double) nounwind alwaysinline { sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.pd, %0) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision float min/max declare <2 x double> @llvm.x86.sse2.max.pd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.pd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone define internal <8 x double> @__min_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary2to8(ret, double, @llvm.x86.sse2.min.pd, %0, %1) ret <8 x double> %ret } define internal double @__min_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.pd, %0, %1) ret double %ret } define internal <8 x double> @__max_varying_double(<8 x double>, <8 x double>) nounwind readnone alwaysinline { binary2to8(ret, double, @llvm.x86.sse2.max.pd, %0, %1) ret <8 x double> %ret } define internal double @__max_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.pd, %0, %1) ret double %ret }