/* Copyright (c) 2010-2014, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file ispc.cpp @brief ispc global definitions */ #include "ispc.h" #include "module.h" #include "util.h" #include "llvmutil.h" #include #ifdef ISPC_IS_WINDOWS #include #include #define strcasecmp stricmp #else #include #include #endif #if defined(LLVM_3_1) || defined(LLVM_3_2) #include #include #include #else #include #include #include #endif #if defined(LLVM_3_5) #include #include #else #include #include #endif #include #include #include #if defined(LLVM_3_1) #include #elif defined(LLVM_3_2) #include #else // LLVM 3.3+ #include #include #endif #include #include #include Globals *g; Module *m; /////////////////////////////////////////////////////////////////////////// // Target #if !defined(ISPC_IS_WINDOWS) && !defined(__arm__) static void __cpuid(int info[4], int infoType) { __asm__ __volatile__ ("cpuid" : "=a" (info[0]), "=b" (info[1]), "=c" (info[2]), "=d" (info[3]) : "0" (infoType)); } /* Save %ebx in case it's the PIC register */ static void __cpuidex(int info[4], int level, int count) { __asm__ __volatile__ ("xchg{l}\t{%%}ebx, %1\n\t" "cpuid\n\t" "xchg{l}\t{%%}ebx, %1\n\t" : "=a" (info[0]), "=r" (info[1]), "=c" (info[2]), "=d" (info[3]) : "0" (level), "2" (count)); } #endif // !ISPC_IS_WINDOWS && !__ARM__ #if !defined(__arm__) static bool __os_has_avx_support() { #if defined(ISPC_IS_WINDOWS) // Check if the OS will save the YMM registers unsigned long long xcrFeatureMask = _xgetbv(_XCR_XFEATURE_ENABLED_MASK); return (xcrFeatureMask & 6) == 6; #else // !defined(ISPC_IS_WINDOWS) // Check xgetbv; this uses a .byte sequence instead of the instruction // directly because older assemblers do not include support for xgetbv and // there is no easy way to conditionally compile based on the assembler used. int rEAX, rEDX; __asm__ __volatile__ (".byte 0x0f, 0x01, 0xd0" : "=a" (rEAX), "=d" (rEDX) : "c" (0)); return (rEAX & 6) == 6; #endif // !defined(ISPC_IS_WINDOWS) } #endif // !__arm__ static const char * lGetSystemISA() { #ifdef __arm__ return "neon-i32x4"; #else int info[4]; __cpuid(info, 1); if ((info[2] & (1 << 28)) != 0 && __os_has_avx_support()) { // AVX // AVX1 for sure.... // Ivy Bridge? if ((info[2] & (1 << 29)) != 0 && // F16C (info[2] & (1 << 30)) != 0) { // RDRAND // So far, so good. AVX2? // Call cpuid with eax=7, ecx=0 int info2[4]; __cpuidex(info2, 7, 0); if ((info2[1] & (1 << 5)) != 0) return "avx2-i32x8"; else return "avx1.1-i32x8"; } // Regular AVX return "avx1-i32x8"; } else if ((info[2] & (1 << 19)) != 0) return "sse4-i32x4"; else if ((info[3] & (1 << 26)) != 0) return "sse2-i32x4"; else { Error(SourcePos(), "Unable to detect supported SSE/AVX ISA. Exiting."); exit(1); } #endif } static const char *supportedCPUs[] = { #ifdef ISPC_ARM_ENABLED // FIXME: LLVM supports a ton of different ARM CPU variants--not just // cortex-a9 and a15. We should be able to handle any of them that also // have NEON support. "cortex-a9", "cortex-a15", #endif "atom", "penryn", "core2", "corei7", "corei7-avx" #if !defined(LLVM_3_1) , "core-avx-i", "core-avx2" #endif // LLVM 3.2+ #if !defined(LLVM_3_1) && !defined(LLVM_3_2) && !defined(LLVM_3_3) , "slm" #endif // LLVM 3.4+ }; Target::Target(const char *arch, const char *cpu, const char *isa, bool pic) : m_target(NULL), m_targetMachine(NULL), #if defined(LLVM_3_1) m_targetData(NULL), #else m_dataLayout(NULL), #endif m_valid(false), m_isa(SSE2), m_arch(""), m_is32Bit(true), m_cpu(""), m_attributes(""), #if !defined(LLVM_3_1) && !defined(LLVM_3_2) m_tf_attributes(NULL), #endif m_nativeVectorWidth(-1), m_nativeVectorAlignment(-1), m_dataTypeWidth(-1), m_vectorWidth(-1), m_generatePIC(pic), m_maskingIsFree(false), m_maskBitCount(-1), m_hasHalf(false), m_hasRand(false), m_hasGather(false), m_hasScatter(false), m_hasTranscendentals(false), m_hasTrigonometry(false), m_hasRsqrtd(false), m_hasRcpd(false) { if (isa == NULL) { if (cpu != NULL) { // If a CPU was specified explicitly, try to pick the best // possible ISA based on that. if (!strcmp(cpu, "core-avx2")) isa = "avx2-i32x8"; #ifdef ISPC_ARM_ENABLED else if (!strcmp(cpu, "cortex-a9") || !strcmp(cpu, "cortex-a15")) isa = "neon-i32x4"; #endif else if (!strcmp(cpu, "core-avx-i")) isa = "avx1.1-i32x8"; else if (!strcmp(cpu, "sandybridge") || !strcmp(cpu, "corei7-avx")) isa = "avx1-i32x8"; else if (!strcmp(cpu, "corei7") || !strcmp(cpu, "penryn") || !strcmp(cpu, "slm")) isa = "sse4-i32x4"; else isa = "sse2-i32x4"; Warning(SourcePos(), "No --target specified on command-line. " "Using ISA \"%s\" based on specified CPU \"%s\".", isa, cpu); } else { // No CPU and no ISA, so use CPUID to figure out what this CPU // supports. isa = lGetSystemISA(); Warning(SourcePos(), "No --target specified on command-line. " "Using default system target \"%s\".", isa); } } #if defined(ISPC_ARM_ENABLED) && !defined(__arm__) if (cpu == NULL && !strncmp(isa, "neon", 4)) // If we're compiling NEON on an x86 host and the CPU wasn't // supplied, don't go and set the CPU based on the host... cpu = "cortex-a9"; #endif if (cpu == NULL) { std::string hostCPU = llvm::sys::getHostCPUName(); if (hostCPU.size() > 0) cpu = strdup(hostCPU.c_str()); else { Warning(SourcePos(), "Unable to determine host CPU!\n"); cpu = "generic"; } } else { bool foundCPU = false; for (int i = 0; i < int(sizeof(supportedCPUs) / sizeof(supportedCPUs[0])); ++i) { if (!strcmp(cpu, supportedCPUs[i])) { foundCPU = true; break; } } if (foundCPU == false) { Error(SourcePos(), "Error: CPU type \"%s\" unknown. Supported CPUs: " "%s.", cpu, SupportedCPUs().c_str()); return; } } this->m_cpu = cpu; if (arch == NULL) { #ifdef ISPC_ARM_ENABLED if (!strncmp(isa, "neon", 4)) arch = "arm"; else #endif if(!strncmp(isa, "nvptx", 5)) arch = "nvptx64"; else arch = "x86-64"; } bool error = false; // Make sure the target architecture is a known one; print an error // with the valid ones otherwise. for (llvm::TargetRegistry::iterator iter = llvm::TargetRegistry::begin(); iter != llvm::TargetRegistry::end(); ++iter) { if (std::string(arch) == iter->getName()) { this->m_target = &*iter; break; } } if (this->m_target == NULL) { fprintf(stderr, "Invalid architecture \"%s\"\nOptions: ", arch); llvm::TargetRegistry::iterator iter; for (iter = llvm::TargetRegistry::begin(); iter != llvm::TargetRegistry::end(); ++iter) fprintf(stderr, "%s ", iter->getName()); fprintf(stderr, "\n"); error = true; } else { this->m_arch = arch; } // Check default LLVM generated targets if (!strcasecmp(isa, "sse2") || !strcasecmp(isa, "sse2-i32x4")) { this->m_isa = Target::SSE2; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 32; this->m_vectorWidth = 4; this->m_attributes = "+sse,+sse2,-sse3,-sse4a,-ssse3,-popcnt" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",-sse4.1,-sse4.2" #else ",-sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "sse2-x2") || !strcasecmp(isa, "sse2-i32x8")) { this->m_isa = Target::SSE2; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 32; this->m_vectorWidth = 8; this->m_attributes = "+sse,+sse2,-sse3,-sse4a,-ssse3,-popcnt" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",-sse4.1,-sse4.2" #else ",-sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "sse4") || !strcasecmp(isa, "sse4-i32x4")) { this->m_isa = Target::SSE4; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 32; this->m_vectorWidth = 4; // TODO: why not sse42 and popcnt? this->m_attributes = "+sse,+sse2,+sse3,-sse4a,+ssse3,-popcnt,+cmov" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+sse4.1,-sse4.2" #else ",+sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "sse4x2") || !strcasecmp(isa, "sse4-x2") || !strcasecmp(isa, "sse4-i32x8")) { this->m_isa = Target::SSE4; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 32; this->m_vectorWidth = 8; this->m_attributes = "+sse,+sse2,+sse3,-sse4a,+ssse3,-popcnt,+cmov" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+sse4.1,-sse4.2" #else ",+sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "sse4-i8x16")) { this->m_isa = Target::SSE4; this->m_nativeVectorWidth = 16; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 8; this->m_vectorWidth = 16; this->m_attributes = "+sse,+sse2,+sse3,-sse4a,+ssse3,-popcnt,+cmov" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+sse4.1,-sse4.2" #else ",+sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 8; } else if (!strcasecmp(isa, "sse4-i16x8")) { this->m_isa = Target::SSE4; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 16; this->m_vectorWidth = 8; this->m_attributes = "+sse,+sse2,+sse3,-sse4a,+ssse3,-popcnt,+cmov" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+sse4.1,-sse4.2" #else ",+sse41,-sse42" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 16; } else if (!strcasecmp(isa, "generic-4") || !strcasecmp(isa, "generic-x4")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_vectorWidth = 4; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasHalf = true; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = true; this->m_hasRsqrtd = this->m_hasRcpd = true; } else if (!strcasecmp(isa, "generic-8") || !strcasecmp(isa, "generic-x8")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_vectorWidth = 8; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasHalf = true; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = true; this->m_hasRsqrtd = this->m_hasRcpd = true; } else if (!strcasecmp(isa, "generic-16") || !strcasecmp(isa, "generic-x16")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 16; this->m_nativeVectorAlignment = 64; this->m_vectorWidth = 16; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasHalf = true; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = true; this->m_hasRsqrtd = this->m_hasRcpd = true; } else if (!strcasecmp(isa, "generic-32") || !strcasecmp(isa, "generic-x32")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 32; this->m_nativeVectorAlignment = 64; this->m_vectorWidth = 32; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasHalf = true; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = true; this->m_hasRsqrtd = this->m_hasRcpd = true; } else if (!strcasecmp(isa, "generic-64") || !strcasecmp(isa, "generic-x64")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 64; this->m_nativeVectorAlignment = 64; this->m_vectorWidth = 64; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasHalf = true; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = true; this->m_hasRsqrtd = this->m_hasRcpd = true; } else if (!strcasecmp(isa, "generic-1") || !strcasecmp(isa, "generic-x1")) { this->m_isa = Target::GENERIC; this->m_nativeVectorWidth = 1; this->m_nativeVectorAlignment = 16; this->m_vectorWidth = 1; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "avx1-i32x4")) { this->m_isa = Target::AVX; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 4; this->m_attributes = "+avx,+popcnt,+cmov"; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "avx") || !strcasecmp(isa, "avx1") || !strcasecmp(isa, "avx1-i32x8")) { this->m_isa = Target::AVX; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 8; this->m_attributes = "+avx,+popcnt,+cmov"; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "avx-i64x4") || !strcasecmp(isa, "avx1-i64x4")) { this->m_isa = Target::AVX; this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */ this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 64; this->m_vectorWidth = 4; this->m_attributes = "+avx,+popcnt,+cmov"; this->m_maskingIsFree = false; this->m_maskBitCount = 64; } else if (!strcasecmp(isa, "avx-x2") || !strcasecmp(isa, "avx1-x2") || !strcasecmp(isa, "avx1-i32x16")) { this->m_isa = Target::AVX; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 16; this->m_attributes = "+avx,+popcnt,+cmov"; this->m_maskingIsFree = false; this->m_maskBitCount = 32; } else if (!strcasecmp(isa, "avx1.1") || !strcasecmp(isa, "avx1.1-i32x8")) { this->m_isa = Target::AVX11; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 8; this->m_attributes = "+avx,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; #endif } else if (!strcasecmp(isa, "avx1.1-x2") || !strcasecmp(isa, "avx1.1-i32x16")) { this->m_isa = Target::AVX11; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 16; this->m_attributes = "+avx,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; #endif } else if (!strcasecmp(isa, "avx1.1-i64x4")) { this->m_isa = Target::AVX11; this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */ this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 64; this->m_vectorWidth = 4; this->m_attributes = "+avx,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif ; this->m_maskingIsFree = false; this->m_maskBitCount = 64; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; #endif } else if (!strcasecmp(isa, "avx2") || !strcasecmp(isa, "avx2-i32x8")) { this->m_isa = Target::AVX2; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 8; this->m_attributes = "+avx2,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif #ifndef LLVM_3_1 ",+fma" #endif // !LLVM_3_1 ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; this->m_hasGather = true; #endif } else if (!strcasecmp(isa, "avx2-x2") || !strcasecmp(isa, "avx2-i32x16")) { this->m_isa = Target::AVX2; this->m_nativeVectorWidth = 16; this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 32; this->m_vectorWidth = 16; this->m_attributes = "+avx2,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif #ifndef LLVM_3_1 ",+fma" #endif // !LLVM_3_1 ; this->m_maskingIsFree = false; this->m_maskBitCount = 32; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; this->m_hasGather = true; #endif } else if (!strcasecmp(isa, "avx2-i64x4")) { this->m_isa = Target::AVX2; this->m_nativeVectorWidth = 8; /* native vector width in terms of floats */ this->m_nativeVectorAlignment = 32; this->m_dataTypeWidth = 64; this->m_vectorWidth = 4; this->m_attributes = "+avx2,+popcnt,+cmov,+f16c" #if defined(LLVM_3_4) || defined(LLVM_3_5) ",+rdrnd" #else ",+rdrand" #endif #ifndef LLVM_3_1 ",+fma" #endif // !LLVM_3_1 ; this->m_maskingIsFree = false; this->m_maskBitCount = 64; this->m_hasHalf = true; #if !defined(LLVM_3_1) // LLVM 3.2+ only this->m_hasRand = true; this->m_hasGather = true; #endif } #ifdef ISPC_ARM_ENABLED else if (!strcasecmp(isa, "neon-i8x16")) { this->m_isa = Target::NEON8; this->m_nativeVectorWidth = 16; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 8; this->m_vectorWidth = 16; this->m_attributes = "+neon,+fp16"; this->m_hasHalf = true; // ?? this->m_maskingIsFree = false; this->m_maskBitCount = 8; } else if (!strcasecmp(isa, "neon-i16x8")) { this->m_isa = Target::NEON16; this->m_nativeVectorWidth = 8; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 16; this->m_vectorWidth = 8; this->m_attributes = "+neon,+fp16"; this->m_hasHalf = true; // ?? this->m_maskingIsFree = false; this->m_maskBitCount = 16; } else if (!strcasecmp(isa, "neon") || !strcasecmp(isa, "neon-i32x4")) { this->m_isa = Target::NEON32; this->m_nativeVectorWidth = 4; this->m_nativeVectorAlignment = 16; this->m_dataTypeWidth = 32; this->m_vectorWidth = 4; this->m_attributes = "+neon,+fp16"; this->m_hasHalf = true; // ?? this->m_maskingIsFree = false; this->m_maskBitCount = 32; } #endif else if (!strcasecmp(isa, "nvptx")) { this->m_isa = Target::NVPTX; this->m_cpu = "sm_35"; this->m_nativeVectorWidth = 32; this->m_nativeVectorAlignment = 32; this->m_vectorWidth = 1; this->m_hasHalf = true; this->m_maskingIsFree = true; this->m_maskBitCount = 1; this->m_hasTranscendentals = true; this->m_hasTrigonometry = true; this->m_hasGather = this->m_hasScatter = false; } else { Error(SourcePos(), "Target \"%s\" is unknown. Choices are: %s.", isa, SupportedTargets()); error = true; } if (!error) { // Create TargetMachine std::string triple = GetTripleString(); llvm::Reloc::Model relocModel = m_generatePIC ? llvm::Reloc::PIC_ : llvm::Reloc::Default; std::string featuresString = m_attributes; llvm::TargetOptions options; #ifdef ISPC_ARM_ENABLED if (m_isa == Target::NEON8 || m_isa == Target::NEON16 || m_isa == Target::NEON32) options.FloatABIType = llvm::FloatABI::Hard; #endif #if !defined(LLVM_3_1) if (g->opt.disableFMA == false) options.AllowFPOpFusion = llvm::FPOpFusion::Fast; #endif // !LLVM_3_1 #ifdef ISPC_IS_WINDOWS if (strcmp("x86", arch) == 0) { // Workaround for issue #503 (LLVM issue 14646). // It's Win32 specific. options.NoFramePointerElim = true; } #endif m_targetMachine = m_target->createTargetMachine(triple, m_cpu, featuresString, options, relocModel); Assert(m_targetMachine != NULL); m_targetMachine->setAsmVerbosityDefault(true); // Initialize TargetData/DataLayout in 3 steps. // 1. Get default data layout first std::string dl_string; #if defined(LLVM_3_1) dl_string = m_targetMachine->getTargetData()->getStringRepresentation(); #else dl_string = m_targetMachine->getDataLayout()->getStringRepresentation(); #endif // 2. Adjust for generic if (m_isa == Target::GENERIC) { // <16 x i1> vectors only need 16 bit / 2 byte alignment, so add // that to the regular datalayout string for IA.. // For generic-4 target we need to treat <4 x i1> as 128 bit value // in terms of required memory storage and alignment, as this is // translated to __m128 type. dl_string = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-" "i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-" "f80:128:128-n8:16:32:64-S128-v16:16:16-v32:32:32-v4:128:128"; } // 3. Finally set member data #if defined(LLVM_3_1) m_targetData = new llvm::TargetData(dl_string); #else m_dataLayout = new llvm::DataLayout(dl_string); #endif // Set is32Bit // This indicates if we are compiling for 32 bit platform // and can assume 32 bit runtime. // FIXME: all generic targets are handled as 64 bit, which is incorrect. this->m_is32Bit = (getDataLayout()->getPointerSize() == 4); #if !defined(LLVM_3_1) && !defined(LLVM_3_2) // This is LLVM 3.3+ feature. // Initialize target-specific "target-feature" attribute. if (!m_attributes.empty()) { llvm::AttrBuilder attrBuilder; if (m_isa != Target::NVPTX) attrBuilder.addAttribute("target-cpu", this->m_cpu); attrBuilder.addAttribute("target-features", this->m_attributes); this->m_tf_attributes = new llvm::AttributeSet( llvm::AttributeSet::get( *g->ctx, llvm::AttributeSet::FunctionIndex, attrBuilder)); } #endif Assert(this->m_vectorWidth <= ISPC_MAX_NVEC); } m_valid = !error; return; } std::string Target::SupportedCPUs() { std::string ret; int count = sizeof(supportedCPUs) / sizeof(supportedCPUs[0]); for (int i = 0; i < count; ++i) { ret += supportedCPUs[i]; if (i != count - 1) ret += ", "; } return ret; } const char * Target::SupportedArchs() { return #ifdef ISPC_ARM_ENABLED "arm, " #endif "x86, x86-64"; } const char * Target::SupportedTargets() { return #ifdef ISPC_ARM_ENABLED "neon-i8x16, neon-i16x8, neon-i32x4, " #endif "sse2-i32x4, sse2-i32x8, " "sse4-i32x4, sse4-i32x8, sse4-i16x8, sse4-i8x16, " "avx1-i32x4, " "avx1-i32x8, avx1-i32x16, avx1-i64x4, " "avx1.1-i32x8, avx1.1-i32x16, avx1.1-i64x4 " "avx2-i32x8, avx2-i32x16, avx2-i64x4, " "generic-x1, generic-x4, generic-x8, generic-x16, " "generic-x32, generic-x64, nvptx"; } std::string Target::GetTripleString() const { llvm::Triple triple; #ifdef ISPC_ARM_ENABLED if (m_arch == "arm") { triple.setTriple("armv7-eabi"); } else #endif { // Start with the host triple as the default triple.setTriple(llvm::sys::getDefaultTargetTriple()); // And override the arch in the host triple based on what the user // specified. Here we need to deal with the fact that LLVM uses one // naming convention for targets TargetRegistry, but wants some // slightly different ones for the triple. TODO: is there a way to // have it do this remapping, which would presumably be a bit less // error prone? if (m_arch == "x86") triple.setArchName("i386"); else if (m_arch == "x86-64") triple.setArchName("x86_64"); else if (m_arch == "nvptx64") triple = llvm::Triple("nvptx64", "nvidia", "cuda"); else triple.setArchName(m_arch); } return triple.str(); } // This function returns string representation of ISA for the purpose of // mangling. And may return any unique string, preferably short, like // sse4, avx and etc. const char * Target::ISAToString(ISA isa) { switch (isa) { #ifdef ISPC_ARM_ENABLED case Target::NEON8: return "neon-8"; case Target::NEON16: return "neon-16"; case Target::NEON32: return "neon-32"; #endif case Target::SSE2: return "sse2"; case Target::SSE4: return "sse4"; case Target::AVX: return "avx"; case Target::AVX11: return "avx11"; case Target::AVX2: return "avx2"; case Target::GENERIC: return "generic"; case Target::NVPTX: return "nvptx"; default: FATAL("Unhandled target in ISAToString()"); } return ""; } const char * Target::GetISAString() const { return ISAToString(m_isa); } // This function returns string representation of default target corresponding // to ISA. I.e. for SSE4 it's sse4-i32x4, for AVX11 it's avx1.1-i32x8. This // string may be used to initialize Target. const char * Target::ISAToTargetString(ISA isa) { switch (isa) { #ifdef ISPC_ARM_ENABLED case Target::NEON8: return "neon-8"; case Target::NEON16: return "neon-16"; case Target::NEON32: return "neon-32"; #endif case Target::SSE2: return "sse2-i32x4"; case Target::SSE4: return "sse4-i32x4"; case Target::AVX: return "avx1-i32x8"; case Target::AVX11: return "avx1.1-i32x8"; case Target::AVX2: return "avx2-i32x8"; case Target::GENERIC: return "generic-4"; case Target::NVPTX: return "nvptx"; default: FATAL("Unhandled target in ISAToTargetString()"); } return ""; } const char * Target::GetISATargetString() const { return ISAToString(m_isa); } static bool lGenericTypeLayoutIndeterminate(llvm::Type *type) { if (type->isFloatingPointTy() || type->isX86_MMXTy() || type->isVoidTy() || type->isIntegerTy() || type->isLabelTy() || type->isMetadataTy()) return false; if (type == LLVMTypes::BoolVectorType || type == LLVMTypes::MaskType || type == LLVMTypes::Int1VectorType) return true; llvm::ArrayType *at = llvm::dyn_cast(type); if (at != NULL) return lGenericTypeLayoutIndeterminate(at->getElementType()); llvm::PointerType *pt = llvm::dyn_cast(type); if (pt != NULL) return false; llvm::StructType *st = llvm::dyn_cast(type); if (st != NULL) { for (int i = 0; i < (int)st->getNumElements(); ++i) if (lGenericTypeLayoutIndeterminate(st->getElementType(i))) return true; return false; } Assert(llvm::isa(type)); return true; } llvm::Value * Target::SizeOf(llvm::Type *type, llvm::BasicBlock *insertAtEnd) { if (m_isa == Target::GENERIC && lGenericTypeLayoutIndeterminate(type)) { llvm::Value *index[1] = { LLVMInt32(1) }; llvm::PointerType *ptrType = llvm::PointerType::get(type, 0); llvm::Value *voidPtr = llvm::ConstantPointerNull::get(ptrType); llvm::ArrayRef arrayRef(&index[0], &index[1]); llvm::Instruction *gep = llvm::GetElementPtrInst::Create(voidPtr, arrayRef, "sizeof_gep", insertAtEnd); if (m_is32Bit || g->opt.force32BitAddressing) return new llvm::PtrToIntInst(gep, LLVMTypes::Int32Type, "sizeof_int", insertAtEnd); else return new llvm::PtrToIntInst(gep, LLVMTypes::Int64Type, "sizeof_int", insertAtEnd); } uint64_t bitSize = getDataLayout()->getTypeSizeInBits(type); Assert((bitSize % 8) == 0); uint64_t byteSize = bitSize / 8; if (m_is32Bit || g->opt.force32BitAddressing) return LLVMInt32((int32_t)byteSize); else return LLVMInt64(byteSize); } llvm::Value * Target::StructOffset(llvm::Type *type, int element, llvm::BasicBlock *insertAtEnd) { if (m_isa == Target::GENERIC && lGenericTypeLayoutIndeterminate(type) == true) { llvm::Value *indices[2] = { LLVMInt32(0), LLVMInt32(element) }; llvm::PointerType *ptrType = llvm::PointerType::get(type, 0); llvm::Value *voidPtr = llvm::ConstantPointerNull::get(ptrType); llvm::ArrayRef arrayRef(&indices[0], &indices[2]); llvm::Instruction *gep = llvm::GetElementPtrInst::Create(voidPtr, arrayRef, "offset_gep", insertAtEnd); if (m_is32Bit || g->opt.force32BitAddressing) return new llvm::PtrToIntInst(gep, LLVMTypes::Int32Type, "offset_int", insertAtEnd); else return new llvm::PtrToIntInst(gep, LLVMTypes::Int64Type, "offset_int", insertAtEnd); } llvm::StructType *structType = llvm::dyn_cast(type); if (structType == NULL || structType->isSized() == false) { Assert(m->errorCount > 0); return NULL; } const llvm::StructLayout *sl = getDataLayout()->getStructLayout(structType); Assert(sl != NULL); uint64_t offset = sl->getElementOffset(element); if (m_is32Bit || g->opt.force32BitAddressing) return LLVMInt32((int32_t)offset); else return LLVMInt64(offset); } void Target::markFuncWithTargetAttr(llvm::Function* func) { #if !defined(LLVM_3_1) && !defined(LLVM_3_2) if (m_tf_attributes) { func->addAttributes(llvm::AttributeSet::FunctionIndex, *m_tf_attributes); } #endif } /////////////////////////////////////////////////////////////////////////// // Opt Opt::Opt() { level = 1; fastMath = false; fastMaskedVload = false; force32BitAddressing = true; unrollLoops = true; disableAsserts = false; disableFMA = false; forceAlignedMemory = false; disableMaskAllOnOptimizations = false; disableHandlePseudoMemoryOps = false; disableBlendedMaskedStores = false; disableCoherentControlFlow = false; disableUniformControlFlow = false; disableGatherScatterOptimizations = false; disableMaskedStoreToStore = false; disableGatherScatterFlattening = false; disableUniformMemoryOptimizations = false; disableCoalescing = false; } /////////////////////////////////////////////////////////////////////////// // Globals Globals::Globals() { mathLib = Globals::Math_ISPC; includeStdlib = true; runCPP = true; debugPrint = false; debugIR = -1; disableWarnings = false; warningsAsErrors = false; quiet = false; forceColoredOutput = false; disableLineWrap = false; emitPerfWarnings = true; emitInstrumentation = false; generateDebuggingSymbols = false; enableFuzzTest = false; fuzzTestSeed = -1; mangleFunctionsWithTarget = false; ctx = new llvm::LLVMContext; #ifdef ISPC_IS_WINDOWS _getcwd(currentDirectory, sizeof(currentDirectory)); #else if (getcwd(currentDirectory, sizeof(currentDirectory)) == NULL) FATAL("Current directory path too long!"); #endif forceAlignment = -1; } /////////////////////////////////////////////////////////////////////////// // SourcePos SourcePos::SourcePos(const char *n, int fl, int fc, int ll, int lc) { name = n; if (name == NULL) { if (m != NULL) name = m->module->getModuleIdentifier().c_str(); else name = "(unknown)"; } first_line = fl; first_column = fc; last_line = ll != 0 ? ll : fl; last_column = lc != 0 ? lc : fc; } llvm::DIFile SourcePos::GetDIFile() const { std::string directory, filename; GetDirectoryAndFileName(g->currentDirectory, name, &directory, &filename); llvm::DIFile ret = m->diBuilder->createFile(filename, directory); Assert(ret.Verify()); return ret; } void SourcePos::Print() const { printf(" @ [%s:%d.%d - %d.%d] ", name, first_line, first_column, last_line, last_column); } bool SourcePos::operator==(const SourcePos &p2) const { return (!strcmp(name, p2.name) && first_line == p2.first_line && first_column == p2.first_column && last_line == p2.last_line && last_column == p2.last_column); } SourcePos Union(const SourcePos &p1, const SourcePos &p2) { if (strcmp(p1.name, p2.name) != 0) return p1; SourcePos ret; ret.name = p1.name; ret.first_line = std::min(p1.first_line, p2.first_line); ret.first_column = std::min(p1.first_column, p2.first_column); ret.last_line = std::max(p1.last_line, p2.last_line); ret.last_column = std::max(p1.last_column, p2.last_column); return ret; }