/* Copyright (c) 2010-2012, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file decl.cpp @brief Implementations of classes related to turning declarations into symbols and types. */ #include "decl.h" #include "util.h" #include "module.h" #include "sym.h" #include "type.h" #include "stmt.h" #include "expr.h" #include #include #include static void lPrintTypeQualifiers(int typeQualifiers) { if (typeQualifiers & TYPEQUAL_INLINE) printf("inline "); if (typeQualifiers & TYPEQUAL_CONST) printf("const "); if (typeQualifiers & TYPEQUAL_UNIFORM) printf("uniform "); if (typeQualifiers & TYPEQUAL_VARYING) printf("varying "); if (typeQualifiers & TYPEQUAL_TASK) printf("task "); if (typeQualifiers & TYPEQUAL_SIGNED) printf("signed "); if (typeQualifiers & TYPEQUAL_UNSIGNED) printf("unsigned "); } /** Given a Type and a set of type qualifiers, apply the type qualifiers to the type, returning the type that is the result. */ static const Type * lApplyTypeQualifiers(int typeQualifiers, const Type *type, SourcePos pos) { if (type == NULL) return NULL; if ((typeQualifiers & TYPEQUAL_CONST) != 0) type = type->GetAsConstType(); if ((typeQualifiers & TYPEQUAL_UNIFORM) != 0) { if (Type::Equal(type, AtomicType::Void)) Error(pos, "\"uniform\" qualifier is illegal with \"void\" type."); else type = type->GetAsUniformType(); } else if ((typeQualifiers & TYPEQUAL_VARYING) != 0) { if (Type::Equal(type, AtomicType::Void)) Error(pos, "\"varying\" qualifier is illegal with \"void\" type."); else type = type->GetAsVaryingType(); } else if (Type::Equal(type, AtomicType::Void) == false) type = type->GetAsUnboundVariabilityType(); if ((typeQualifiers & TYPEQUAL_UNSIGNED) != 0) { if ((typeQualifiers & TYPEQUAL_SIGNED) != 0) Error(pos, "Illegal to apply both \"signed\" and \"unsigned\" " "qualifiers."); const Type *unsignedType = type->GetAsUnsignedType(); if (unsignedType != NULL) type = unsignedType; else { const Type *resolvedType = type->ResolveUnboundVariability(Variability::Varying); Error(pos, "\"unsigned\" qualifier is illegal with \"%s\" type.", resolvedType->GetString().c_str()); } } if ((typeQualifiers & TYPEQUAL_SIGNED) != 0 && type->IsIntType() == false) { const Type *resolvedType = type->ResolveUnboundVariability(Variability::Varying); Error(pos, "\"signed\" qualifier is illegal with non-integer type " "\"%s\".", resolvedType->GetString().c_str()); } return type; } /////////////////////////////////////////////////////////////////////////// // DeclSpecs DeclSpecs::DeclSpecs(const Type *t, StorageClass sc, int tq) { baseType = t; storageClass = sc; typeQualifiers = tq; soaWidth = 0; vectorSize = 0; } const Type * DeclSpecs::GetBaseType(SourcePos pos) const { const Type *retType = baseType; if (retType == NULL) { Warning(pos, "No type specified in declaration. Assuming int32."); retType = AtomicType::UniformInt32->GetAsUnboundVariabilityType(); } if (vectorSize > 0) { const AtomicType *atomicType = dynamic_cast(retType); if (atomicType == NULL) { Error(pos, "Only atomic types (int, float, ...) are legal for vector " "types."); return NULL; } retType = new VectorType(atomicType, vectorSize); } retType = lApplyTypeQualifiers(typeQualifiers, retType, pos); if (soaWidth > 0) { const StructType *st = dynamic_cast(retType); if (st == NULL) { Error(pos, "Illegal to provide soa<%d> qualifier with non-struct " "type \"%s\".", soaWidth, retType->GetString().c_str()); return NULL; } else if (soaWidth <= 0 || (soaWidth & (soaWidth - 1)) != 0) { Error(pos, "soa<%d> width illegal. Value must be positive power " "of two.", soaWidth); return NULL; } if (st->IsUniformType()) { Error(pos, "\"uniform\" qualifier and \"soa<%d>\" qualifier can't " "both be used in a type declaration.", soaWidth); return NULL; } else if (st->IsVaryingType()) { Error(pos, "\"varying\" qualifier and \"soa<%d>\" qualifier can't " "both be used in a type declaration.", soaWidth); return NULL; } else retType = st->GetAsSOAType(soaWidth); if (soaWidth < g->target.vectorWidth) PerformanceWarning(pos, "soa<%d> width smaller than gang size %d " "currently leads to inefficient code to access " "soa types.", soaWidth, g->target.vectorWidth); } return retType; } static const char * lGetStorageClassName(StorageClass storageClass) { switch (storageClass) { case SC_NONE: return ""; case SC_EXTERN: return "extern"; case SC_EXTERN_C: return "extern \"C\""; case SC_EXPORT: return "export"; case SC_STATIC: return "static"; case SC_TYPEDEF: return "typedef"; default: FATAL("Unhandled storage class in lGetStorageClassName"); return ""; } } void DeclSpecs::Print() const { printf("Declspecs: [%s ", lGetStorageClassName(storageClass)); if (soaWidth > 0) printf("soa<%d> ", soaWidth); lPrintTypeQualifiers(typeQualifiers); printf("base type: %s", baseType->GetString().c_str()); if (vectorSize > 0) printf("<%d>", vectorSize); printf("]"); } /////////////////////////////////////////////////////////////////////////// // Declarator Declarator::Declarator(DeclaratorKind dk, SourcePos p) : pos(p), kind(dk) { child = NULL; typeQualifiers = 0; arraySize = -1; sym = NULL; initExpr = NULL; } void Declarator::InitFromDeclSpecs(DeclSpecs *ds) { const Type *t = GetType(ds); if (t == NULL) { Assert(m->errorCount > 0); return; } Symbol *sym = GetSymbol(); if (sym != NULL) { sym->type = t; sym->storageClass = ds->storageClass; } } Symbol * Declarator::GetSymbol() const { // The symbol lives at the last child in the chain, so walk down there // and return the one there. const Declarator *d = this; while (d->child != NULL) d = d->child; return d->sym; } void Declarator::Print(int indent) const { printf("%*cdeclarator: [", indent, ' '); pos.Print(); lPrintTypeQualifiers(typeQualifiers); Symbol *sym = GetSymbol(); if (sym != NULL) printf("%s", sym->name.c_str()); else printf("(null symbol)"); printf(", array size = %d", arraySize); printf(", kind = "); switch (kind) { case DK_BASE: printf("base"); break; case DK_POINTER: printf("pointer"); break; case DK_REFERENCE: printf("reference"); break; case DK_ARRAY: printf("array"); break; case DK_FUNCTION: printf("function"); break; default: FATAL("Unhandled declarator kind"); } if (initExpr != NULL) { printf(" = ("); initExpr->Print(); printf(")"); } if (functionParams.size() > 0) { for (unsigned int i = 0; i < functionParams.size(); ++i) { printf("\n%*cfunc param %d:\n", indent, ' ', i); functionParams[i]->Print(indent+4); } } if (child != NULL) child->Print(indent + 4); printf("]\n"); } Symbol * Declarator::GetFunctionInfo(DeclSpecs *ds, std::vector *funArgs) { const FunctionType *type = dynamic_cast(GetType(ds)); if (type == NULL) return NULL; Symbol *declSym = GetSymbol(); Assert(declSym != NULL); // Get the symbol for the function from the symbol table. (It should // already have been added to the symbol table by AddGlobal() by the // time we get here.) Symbol *funSym = m->symbolTable->LookupFunction(declSym->name.c_str(), type); if (funSym == NULL) // May be NULL due to error earlier in compilation Assert(m->errorCount > 0); else funSym->pos = pos; // Walk down to the declarator for the function. (We have to get past // the stuff that specifies the function's return type before we get to // the function's declarator.) Declarator *d = this; while (d != NULL && d->kind != DK_FUNCTION) d = d->child; Assert(d != NULL); for (unsigned int i = 0; i < d->functionParams.size(); ++i) { Symbol *sym = d->GetSymbolForFunctionParameter(i); if (sym->type == NULL) { Assert(m->errorCount > 0); continue; } else sym->type = sym->type->ResolveUnboundVariability(Variability::Varying); funArgs->push_back(sym); } if (funSym != NULL) funSym->type = funSym->type->ResolveUnboundVariability(Variability::Varying); return funSym; } const Type * Declarator::GetType(const Type *base, DeclSpecs *ds) const { bool hasUniformQual = ((typeQualifiers & TYPEQUAL_UNIFORM) != 0); bool hasVaryingQual = ((typeQualifiers & TYPEQUAL_VARYING) != 0); bool isTask = ((typeQualifiers & TYPEQUAL_TASK) != 0); bool isConst = ((typeQualifiers & TYPEQUAL_CONST) != 0); if (hasUniformQual && hasVaryingQual) { Error(pos, "Can't provide both \"uniform\" and \"varying\" qualifiers."); return NULL; } if (kind != DK_FUNCTION && isTask) Error(pos, "\"task\" qualifier illegal in variable declaration."); Variability variability(Variability::Unbound); if (hasUniformQual) variability = Variability::Uniform; else if (hasVaryingQual) variability = Variability::Varying; const Type *type = base; switch (kind) { case DK_BASE: // All of the type qualifiers should be in the DeclSpecs for the // base declarator Assert(typeQualifiers == 0); Assert(child == NULL); return type; case DK_POINTER: /* For now, any pointer to an SOA type gets the slice property; if we add the capability to declare pointers as slices or not, we'll want to set this based on a type qualifier here. */ type = new PointerType(type, variability, isConst, type->IsSOAType()); if (child != NULL) return child->GetType(type, ds); else return type; break; case DK_REFERENCE: if (hasUniformQual) Error(pos, "\"uniform\" qualifier is illegal to apply to references."); if (hasVaryingQual) Error(pos, "\"varying\" qualifier is illegal to apply to references."); if (isConst) Error(pos, "\"const\" qualifier is to illegal apply to references."); // The parser should disallow this already, but double check. if (dynamic_cast(type) != NULL) { Error(pos, "References to references are illegal."); return NULL; } type = new ReferenceType(type); if (child != NULL) return child->GetType(type, ds); else return type; break; case DK_ARRAY: if (Type::Equal(type, AtomicType::Void)) { Error(pos, "Arrays of \"void\" type are illegal."); return NULL; } if (dynamic_cast(type)) { Error(pos, "Arrays of references (type \"%s\") are illegal.", type->GetString().c_str()); return NULL; } type = new ArrayType(type, arraySize); if (child) return child->GetType(type, ds); else return type; break; case DK_FUNCTION: { std::vector args; std::vector argNames; std::vector argDefaults; std::vector argPos; // Loop over the function arguments and store the names, types, // default values (if any), and source file positions each one in // the corresponding vector. for (unsigned int i = 0; i < functionParams.size(); ++i) { Declaration *d = functionParams[i]; Symbol *sym = GetSymbolForFunctionParameter(i); if (d->declSpecs->storageClass != SC_NONE) Error(sym->pos, "Storage class \"%s\" is illegal in " "function parameter declaration for parameter \"%s\".", lGetStorageClassName(d->declSpecs->storageClass), sym->name.c_str()); if (Type::Equal(sym->type, AtomicType::Void)) { Error(sym->pos, "Parameter with type \"void\" illegal in function " "parameter list."); sym->type = NULL; } const ArrayType *at = dynamic_cast(sym->type); if (at != NULL) { // As in C, arrays are passed to functions as pointers to // their element type. We'll just immediately make this // change now. (One shortcoming of losing the fact that // the it was originally an array is that any warnings or // errors later issued that print the function type will // report this differently than it was originally declared // in the function, but it's not clear that this is a // significant problem.) if (at->GetElementType() == NULL) { Assert(m->errorCount > 0); return NULL; } const Type *targetType = at->GetElementType(); targetType = targetType->ResolveUnboundVariability(Variability::Varying); sym->type = PointerType::GetUniform(targetType); // Make sure there are no unsized arrays (other than the // first dimension) in function parameter lists. at = dynamic_cast(at->GetElementType()); while (at != NULL) { if (at->GetElementCount() == 0) Error(sym->pos, "Arrays with unsized dimensions in " "dimensions after the first one are illegal in " "function parameter lists."); at = dynamic_cast(at->GetElementType()); } } args.push_back(sym->type); argNames.push_back(sym->name); argPos.push_back(sym->pos); ConstExpr *init = NULL; if (d->declarators.size()) { // Try to find an initializer expression; if there is one, // it lives down to the base declarator. Declarator *decl = d->declarators[0]; while (decl->child != NULL) { Assert(decl->initExpr == NULL); decl = decl->child; } if (decl->initExpr != NULL && (decl->initExpr = TypeCheck(decl->initExpr)) != NULL && (decl->initExpr = Optimize(decl->initExpr)) != NULL && (init = dynamic_cast(decl->initExpr)) == NULL) { Error(decl->initExpr->pos, "Default value for parameter " "\"%s\" must be a compile-time constant.", sym->name.c_str()); } } argDefaults.push_back(init); } const Type *returnType = type; if (returnType == NULL) { Error(pos, "No return type provided in function declaration."); return NULL; } if (dynamic_cast(returnType) != NULL) { Error(pos, "Illegal to return function type from function."); return NULL; } bool isExported = ds && (ds->storageClass == SC_EXPORT); bool isExternC = ds && (ds->storageClass == SC_EXTERN_C); bool isTask = ds && ((ds->typeQualifiers & TYPEQUAL_TASK) != 0); if (isExported && isTask) { Error(pos, "Function can't have both \"task\" and \"export\" " "qualifiers"); return NULL; } if (isExternC && isTask) { Error(pos, "Function can't have both \"extern \"C\"\" and \"task\" " "qualifiers"); return NULL; } if (isExternC && isExported) { Error(pos, "Function can't have both \"extern \"C\"\" and \"export\" " "qualifiers"); return NULL; } if (child == NULL) { Assert(m->errorCount > 0); return NULL; } const FunctionType *functionType = new FunctionType(returnType, args, argNames, argDefaults, argPos, isTask, isExported, isExternC); functionType = functionType->ResolveUnboundVariability(Variability::Varying); // handle any explicit __declspecs on the function if (ds != NULL) { for (int i = 0; i < (int)ds->declSpecList.size(); ++i) { std::string str = ds->declSpecList[i].first; SourcePos pos = ds->declSpecList[i].second; if (str == "safe") (const_cast(functionType))->isSafe = true; else if (!strncmp(str.c_str(), "cost", 4)) { int cost = atoi(str.c_str() + 4); if (cost < 0) Error(pos, "Negative function cost %d is illegal.", cost); (const_cast(functionType))->costOverride = cost; } else Error(pos, "__declspec parameter \"%s\" unknown.", str.c_str()); } } return child->GetType(functionType, ds); } default: FATAL("Unexpected decl kind"); return NULL; } } const Type * Declarator::GetType(DeclSpecs *ds) const { const Type *baseType = ds->GetBaseType(pos); const Type *type = GetType(baseType, ds); if (ds->declSpecList.size() > 0 && type != NULL && dynamic_cast(type) == NULL) { Error(pos, "__declspec specifiers for non-function type \"%s\" are " "not used.", type->GetString().c_str()); } return type; } Symbol * Declarator::GetSymbolForFunctionParameter(int paramNum) const { Assert(paramNum < (int)functionParams.size()); Declaration *d = functionParams[paramNum]; char buf[32]; Symbol *sym; if (d->declarators.size() == 0) { // function declaration like foo(float), w/o a name for // the parameter sprintf(buf, "__anon_parameter_%d", paramNum); sym = new Symbol(buf, pos); sym->type = d->declSpecs->GetBaseType(pos); } else { Assert(d->declarators.size() == 1); sym = d->declarators[0]->GetSymbol(); if (sym == NULL) { // Handle more complex anonymous declarations like // float (float **). sprintf(buf, "__anon_parameter_%d", paramNum); sym = new Symbol(buf, d->declarators[0]->pos); sym->type = d->declarators[0]->GetType(d->declSpecs); } } return sym; } /////////////////////////////////////////////////////////////////////////// // Declaration Declaration::Declaration(DeclSpecs *ds, std::vector *dlist) { declSpecs = ds; if (dlist != NULL) declarators = *dlist; for (unsigned int i = 0; i < declarators.size(); ++i) if (declarators[i] != NULL) declarators[i]->InitFromDeclSpecs(declSpecs); } Declaration::Declaration(DeclSpecs *ds, Declarator *d) { declSpecs = ds; if (d != NULL) { d->InitFromDeclSpecs(ds); declarators.push_back(d); } } std::vector Declaration::GetVariableDeclarations() const { Assert(declSpecs->storageClass != SC_TYPEDEF); std::vector vars; for (unsigned int i = 0; i < declarators.size(); ++i) { Declarator *decl = declarators[i]; if (decl == NULL) { // Ignore earlier errors Assert(m->errorCount > 0); continue; } Symbol *sym = decl->GetSymbol(); if (sym == NULL || sym->type == NULL) { // Ignore errors Assert(m->errorCount > 0); continue; } sym->type = sym->type->ResolveUnboundVariability(Variability::Varying); if (Type::Equal(sym->type, AtomicType::Void)) Error(sym->pos, "\"void\" type variable illegal in declaration."); else if (dynamic_cast(sym->type) == NULL) { m->symbolTable->AddVariable(sym); vars.push_back(VariableDeclaration(sym, decl->initExpr)); } } return vars; } void Declaration::DeclareFunctions() { Assert(declSpecs->storageClass != SC_TYPEDEF); for (unsigned int i = 0; i < declarators.size(); ++i) { Declarator *decl = declarators[i]; if (decl == NULL) { // Ignore earlier errors Assert(m->errorCount > 0); continue; } Symbol *sym = decl->GetSymbol(); if (sym == NULL || sym->type == NULL) { // Ignore errors Assert(m->errorCount > 0); continue; } sym->type = sym->type->ResolveUnboundVariability(Variability::Varying); if (dynamic_cast(sym->type) == NULL) continue; bool isInline = (declSpecs->typeQualifiers & TYPEQUAL_INLINE); m->AddFunctionDeclaration(sym, isInline); } } void Declaration::Print(int indent) const { printf("%*cDeclaration: specs [", indent, ' '); declSpecs->Print(); printf("], declarators:\n"); for (unsigned int i = 0 ; i < declarators.size(); ++i) declarators[i]->Print(indent+4); } /////////////////////////////////////////////////////////////////////////// void GetStructTypesNamesPositions(const std::vector &sd, std::vector *elementTypes, std::vector *elementNames, std::vector *elementPositions) { std::set seenNames; for (unsigned int i = 0; i < sd.size(); ++i) { const Type *type = sd[i]->type; if (type == NULL) continue; // FIXME: making this fake little DeclSpecs here is really // disgusting DeclSpecs ds(type); if (type->IsUniformType()) ds.typeQualifiers |= TYPEQUAL_UNIFORM; else if (type->IsVaryingType()) ds.typeQualifiers |= TYPEQUAL_VARYING; for (unsigned int j = 0; j < sd[i]->declarators->size(); ++j) { Declarator *d = (*sd[i]->declarators)[j]; d->InitFromDeclSpecs(&ds); Symbol *sym = d->GetSymbol(); if (Type::Equal(sym->type, AtomicType::Void)) Error(d->pos, "\"void\" type illegal for struct member."); elementTypes->push_back(sym->type); if (seenNames.find(sym->name) != seenNames.end()) Error(d->pos, "Struct member \"%s\" has same name as a " "previously-declared member.", sym->name.c_str()); else seenNames.insert(sym->name); elementNames->push_back(sym->name); elementPositions->push_back(sym->pos); } } for (int i = 0; i < (int)elementTypes->size() - 1; ++i) { const ArrayType *arrayType = dynamic_cast((*elementTypes)[i]); if (arrayType != NULL && arrayType->GetElementCount() == 0) Error((*elementPositions)[i], "Unsized arrays aren't allowed except " "for the last member in a struct definition."); } }