/* Copyright (c) 2010-2011, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "deferred.h" struct InputDataArrays { float *zBuffer; unsigned int16 *normalEncoded_x; // half float unsigned int16 *normalEncoded_y; // half float unsigned int16 *specularAmount; // half float unsigned int16 *specularPower; // half float unsigned int8 *albedo_x; // unorm8 unsigned int8 *albedo_y; // unorm8 unsigned int8 *albedo_z; // unorm8 float *lightPositionView_x; float *lightPositionView_y; float *lightPositionView_z; float *lightAttenuationBegin; float *lightColor_x; float *lightColor_y; float *lightColor_z; float *lightAttenuationEnd; }; struct InputHeader { float cameraProj[4][4]; float cameraNear; float cameraFar; int32 framebufferWidth; int32 framebufferHeight; int32 numLights; int32 inputDataChunkSize; int32 inputDataArrayOffsets[idaNum]; }; /////////////////////////////////////////////////////////////////////////// // Common utility routines static inline float dot3(float x, float y, float z, float a, float b, float c) { return (x*a + y*b + z*c); } static inline void normalize3(float x, float y, float z, float &ox, float &oy, float &oz) { float n = rsqrt(x*x + y*y + z*z); ox = x * n; oy = y * n; oz = z * n; } static inline float Unorm8ToFloat32(unsigned int8 u) { return (float)u * (1.0f / 255.0f); } static inline unsigned int8 Float32ToUnorm8(float f) { return (unsigned int8)(f * 255.0f); } static void ComputeZBounds( uniform int32 tileStartX, uniform int32 tileEndX, uniform int32 tileStartY, uniform int32 tileEndY, // G-buffer data uniform float zBuffer[], uniform int32 gBufferWidth, // Camera data uniform float cameraProj_33, uniform float cameraProj_43, uniform float cameraNear, uniform float cameraFar, // Output uniform float &minZ, uniform float &maxZ ) { // Find Z bounds float laneMinZ = cameraFar; float laneMaxZ = cameraNear; for (uniform int32 y = tileStartY; y < tileEndY; ++y) { foreach (x = tileStartX ... tileEndX) { // Unproject depth buffer Z value into view space float z = zBuffer[y * gBufferWidth + x]; float viewSpaceZ = cameraProj_43 / (z - cameraProj_33); // Work out Z bounds for our samples // Avoid considering skybox/background or otherwise invalid pixels if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) { laneMinZ = min(laneMinZ, viewSpaceZ); laneMaxZ = max(laneMaxZ, viewSpaceZ); } } } minZ = reduce_min(laneMinZ); maxZ = reduce_max(laneMaxZ); } export uniform int32 IntersectLightsWithTileMinMax( uniform int32 tileStartX, uniform int32 tileEndX, uniform int32 tileStartY, uniform int32 tileEndY, // Tile data uniform float minZ, uniform float maxZ, // G-buffer data uniform int32 gBufferWidth, uniform int32 gBufferHeight, // Camera data uniform float cameraProj_11, uniform float cameraProj_22, // Light Data uniform int32 numLights, uniform float light_positionView_x_array[], uniform float light_positionView_y_array[], uniform float light_positionView_z_array[], uniform float light_attenuationEnd_array[], // Output uniform int32 tileLightIndices[] ) { uniform float gBufferScale_x = 0.5f * (float)gBufferWidth; uniform float gBufferScale_y = 0.5f * (float)gBufferHeight; uniform float frustumPlanes_xy[4] = { -(cameraProj_11 * gBufferScale_x), (cameraProj_11 * gBufferScale_x), (cameraProj_22 * gBufferScale_y), -(cameraProj_22 * gBufferScale_y) }; uniform float frustumPlanes_z[4] = { tileEndX - gBufferScale_x, -tileStartX + gBufferScale_x, tileEndY - gBufferScale_y, -tileStartY + gBufferScale_y }; for (uniform int i = 0; i < 4; ++i) { uniform float norm = rsqrt(frustumPlanes_xy[i] * frustumPlanes_xy[i] + frustumPlanes_z[i] * frustumPlanes_z[i]); frustumPlanes_xy[i] *= norm; frustumPlanes_z[i] *= norm; } uniform int32 tileNumLights = 0; foreach (lightIndex = 0 ... numLights) { float light_positionView_z = light_positionView_z_array[lightIndex]; float light_attenuationEnd = light_attenuationEnd_array[lightIndex]; float light_attenuationEndNeg = -light_attenuationEnd; float d = light_positionView_z - minZ; bool inFrustum = (d >= light_attenuationEndNeg); d = maxZ - light_positionView_z; inFrustum = inFrustum && (d >= light_attenuationEndNeg); // This seems better than cif(!inFrustum) ccontinue; here since we // don't actually need to mask the rest of this function - this is // just a greedy early-out. Could also structure all of this as // nested if() statements, but this a bit easier to read if (any(inFrustum)) { float light_positionView_x = light_positionView_x_array[lightIndex]; float light_positionView_y = light_positionView_y_array[lightIndex]; d = light_positionView_z * frustumPlanes_z[0] + light_positionView_x * frustumPlanes_xy[0]; inFrustum = inFrustum && (d >= light_attenuationEndNeg); d = light_positionView_z * frustumPlanes_z[1] + light_positionView_x * frustumPlanes_xy[1]; inFrustum = inFrustum && (d >= light_attenuationEndNeg); d = light_positionView_z * frustumPlanes_z[2] + light_positionView_y * frustumPlanes_xy[2]; inFrustum = inFrustum && (d >= light_attenuationEndNeg); d = light_positionView_z * frustumPlanes_z[3] + light_positionView_y * frustumPlanes_xy[3]; inFrustum = inFrustum && (d >= light_attenuationEndNeg); // Pack and store intersecting lights cif (inFrustum) { tileNumLights += packed_store_active(&tileLightIndices[tileNumLights], lightIndex); } } } return tileNumLights; } static uniform int32 IntersectLightsWithTile( uniform int32 tileStartX, uniform int32 tileEndX, uniform int32 tileStartY, uniform int32 tileEndY, uniform int32 gBufferWidth, uniform int32 gBufferHeight, // G-buffer data uniform float zBuffer[], // Camera data uniform float cameraProj_11, uniform float cameraProj_22, uniform float cameraProj_33, uniform float cameraProj_43, uniform float cameraNear, uniform float cameraFar, // Light Data uniform int32 numLights, uniform float light_positionView_x_array[], uniform float light_positionView_y_array[], uniform float light_positionView_z_array[], uniform float light_attenuationEnd_array[], // Output uniform int32 tileLightIndices[] ) { uniform float minZ, maxZ; ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY, zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar, minZ, maxZ); uniform int32 tileNumLights = IntersectLightsWithTileMinMax( tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ, gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22, MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array, light_positionView_z_array, light_attenuationEnd_array, tileLightIndices); return tileNumLights; } export void ShadeTile( uniform int32 tileStartX, uniform int32 tileEndX, uniform int32 tileStartY, uniform int32 tileEndY, uniform int32 gBufferWidth, uniform int32 gBufferHeight, uniform InputDataArrays &inputData, // Camera data uniform float cameraProj_11, uniform float cameraProj_22, uniform float cameraProj_33, uniform float cameraProj_43, // Light list uniform int32 tileLightIndices[], uniform int32 tileNumLights, // UI uniform bool visualizeLightCount, // Output uniform unsigned int8 framebuffer_r[], uniform unsigned int8 framebuffer_g[], uniform unsigned int8 framebuffer_b[] ) { if (tileNumLights == 0 || visualizeLightCount) { uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255)); for (uniform int32 y = tileStartY; y < tileEndY; ++y) { foreach (x = tileStartX ... tileEndX) { int32 framebufferIndex = (y * gBufferWidth + x); framebuffer_r[framebufferIndex] = c; framebuffer_g[framebufferIndex] = c; framebuffer_b[framebufferIndex] = c; } } } else { uniform float twoOverGBufferWidth = 2.0f / gBufferWidth; uniform float twoOverGBufferHeight = 2.0f / gBufferHeight; for (uniform int32 y = tileStartY; y < tileEndY; ++y) { uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f); foreach (x = tileStartX ... tileEndX) { int32 gBufferOffset = y * gBufferWidth + x; // Reconstruct position and (negative) view vector from G-buffer float surface_positionView_x, surface_positionView_y, surface_positionView_z; float Vneg_x, Vneg_y, Vneg_z; float z = inputData.zBuffer[gBufferOffset]; // Compute screen/clip-space position // NOTE: Mind DX11 viewport transform and pixel center! float positionScreen_x = (0.5f + (float)(x)) * twoOverGBufferWidth - 1.0f; // Unproject depth buffer Z value into view space surface_positionView_z = cameraProj_43 / (z - cameraProj_33); surface_positionView_x = positionScreen_x * surface_positionView_z / cameraProj_11; surface_positionView_y = positionScreen_y * surface_positionView_z / cameraProj_22; // We actually end up with a vector pointing *at* the // surface (i.e. the negative view vector) normalize3(surface_positionView_x, surface_positionView_y, surface_positionView_z, Vneg_x, Vneg_y, Vneg_z); // Reconstruct normal from G-buffer float surface_normal_x, surface_normal_y, surface_normal_z; float normal_x = half_to_float(inputData.normalEncoded_x[gBufferOffset]); float normal_y = half_to_float(inputData.normalEncoded_y[gBufferOffset]); float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y); float m = sqrt(4.0f * f - 1.0f); surface_normal_x = m * (4.0f * normal_x - 2.0f); surface_normal_y = m * (4.0f * normal_y - 2.0f); surface_normal_z = 3.0f - 8.0f * f; // Load other G-buffer parameters float surface_specularAmount = half_to_float(inputData.specularAmount[gBufferOffset]); float surface_specularPower = half_to_float(inputData.specularPower[gBufferOffset]); float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]); float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]); float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]); float lit_x = 0.0f; float lit_y = 0.0f; float lit_z = 0.0f; for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights; ++tileLightIndex) { uniform int32 lightIndex = tileLightIndices[tileLightIndex]; // Gather light data relevant to initial culling uniform float light_positionView_x = inputData.lightPositionView_x[lightIndex]; uniform float light_positionView_y = inputData.lightPositionView_y[lightIndex]; uniform float light_positionView_z = inputData.lightPositionView_z[lightIndex]; uniform float light_attenuationEnd = inputData.lightAttenuationEnd[lightIndex]; // Compute light vector float L_x = light_positionView_x - surface_positionView_x; float L_y = light_positionView_y - surface_positionView_y; float L_z = light_positionView_z - surface_positionView_z; float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z); // Clip at end of attenuation float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd; cif (distanceToLight2 < light_attenutaionEnd2) { float distanceToLight = sqrt(distanceToLight2); // HLSL "rcp" is allowed to be fairly inaccurate float distanceToLightRcp = rcp(distanceToLight); L_x *= distanceToLightRcp; L_y *= distanceToLightRcp; L_z *= distanceToLightRcp; // Start computing brdf float NdotL = dot3(surface_normal_x, surface_normal_y, surface_normal_z, L_x, L_y, L_z); // Clip back facing cif (NdotL > 0.0f) { uniform float light_attenuationBegin = inputData.lightAttenuationBegin[lightIndex]; // Light distance attenuation (linstep) float lightRange = (light_attenuationEnd - light_attenuationBegin); float falloffPosition = (light_attenuationEnd - distanceToLight); float attenuation = min(falloffPosition / lightRange, 1.0f); float H_x = (L_x - Vneg_x); float H_y = (L_y - Vneg_y); float H_z = (L_z - Vneg_z); normalize3(H_x, H_y, H_z, H_x, H_y, H_z); float NdotH = dot3(surface_normal_x, surface_normal_y, surface_normal_z, H_x, H_y, H_z); NdotH = max(NdotH, 0.0f); float specular = pow(NdotH, surface_specularPower); float specularNorm = (surface_specularPower + 2.0f) * (1.0f / 8.0f); float specularContrib = surface_specularAmount * specularNorm * specular; float k = attenuation * NdotL * (1.0f + specularContrib); uniform float light_color_x = inputData.lightColor_x[lightIndex]; uniform float light_color_y = inputData.lightColor_y[lightIndex]; uniform float light_color_z = inputData.lightColor_z[lightIndex]; float lightContrib_x = surface_albedo_x * light_color_x; float lightContrib_y = surface_albedo_y * light_color_y; float lightContrib_z = surface_albedo_z * light_color_z; lit_x += lightContrib_x * k; lit_y += lightContrib_y * k; lit_z += lightContrib_z * k; } } } // Gamma correct // These pows are pretty slow right now, but we can do // something faster if really necessary to squeeze every // last bit of performance out of it float gamma = 1.0 / 2.2f; lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma); lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma); lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma); framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x); framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y); framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z); } } } } /////////////////////////////////////////////////////////////////////////// // Static decomposition task void RenderTile(uniform int num_groups_x, uniform int num_groups_y, uniform InputHeader &inputHeader, uniform InputDataArrays &inputData, uniform int visualizeLightCount, // Output uniform unsigned int8 framebuffer_r[], uniform unsigned int8 framebuffer_g[], uniform unsigned int8 framebuffer_b[]) { uniform int32 group_y = taskIndex / num_groups_x; uniform int32 group_x = taskIndex % num_groups_x; uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH; uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT; uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH; uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT; uniform int framebufferWidth = inputHeader.framebufferWidth; uniform int framebufferHeight = inputHeader.framebufferHeight; uniform float cameraProj_00 = inputHeader.cameraProj[0][0]; uniform float cameraProj_11 = inputHeader.cameraProj[1][1]; uniform float cameraProj_22 = inputHeader.cameraProj[2][2]; uniform float cameraProj_32 = inputHeader.cameraProj[3][2]; // Light intersection: figure out which lights illuminate this tile. uniform int tileLightIndices[MAX_LIGHTS]; // Light list for the tile uniform int numTileLights = IntersectLightsWithTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y, framebufferWidth, framebufferHeight, inputData.zBuffer, cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32, inputHeader.cameraNear, inputHeader.cameraFar, MAX_LIGHTS, inputData.lightPositionView_x, inputData.lightPositionView_y, inputData.lightPositionView_z, inputData.lightAttenuationEnd, tileLightIndices); // And now shade the tile, using the lights in tileLightIndices ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y, framebufferWidth, framebufferHeight, inputData, cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32, tileLightIndices, numTileLights, visualizeLightCount, framebuffer_r, framebuffer_g, framebuffer_b); } export void RenderStatic(uniform InputHeader &inputHeader, uniform InputDataArrays &inputData, uniform int visualizeLightCount, // Output uniform unsigned int8 framebuffer_r[], uniform unsigned int8 framebuffer_g[], uniform unsigned int8 framebuffer_b[]) { uniform int num_groups_x = (inputHeader.framebufferWidth + MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH; uniform int num_groups_y = (inputHeader.framebufferHeight + MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT; uniform int num_groups = num_groups_x * num_groups_y; // Launch a task to render each tile, each of which is MIN_TILE_WIDTH // by MIN_TILE_HEIGHT pixels. launch[num_groups] RenderTile(num_groups_x, num_groups_y, inputHeader, inputData, visualizeLightCount, framebuffer_r, framebuffer_g, framebuffer_b); } /////////////////////////////////////////////////////////////////////////// // Routines for dynamic decomposition path // This computes the z min/max range for a whole row worth of tiles. export void ComputeZBoundsRow( uniform int32 tileY, uniform int32 tileWidth, uniform int32 tileHeight, uniform int32 numTilesX, uniform int32 numTilesY, // G-buffer data uniform float zBuffer[], uniform int32 gBufferWidth, // Camera data uniform float cameraProj_33, uniform float cameraProj_43, uniform float cameraNear, uniform float cameraFar, // Output uniform float minZArray[], uniform float maxZArray[] ) { for (uniform int32 tileX = 0; tileX < numTilesX; ++tileX) { uniform float minZ, maxZ; ComputeZBounds( tileX * tileWidth, tileX * tileWidth + tileWidth, tileY * tileHeight, tileY * tileHeight + tileHeight, zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar, minZ, maxZ); minZArray[tileX] = minZ; maxZArray[tileX] = maxZ; } } // Reclassifies the lights with respect to four sub-tiles when we refine a tile. // numLights need not be a multiple of programCount here, but the input and output arrays // should be able to handle programCount-sized load/stores. export void SplitTileMinMax( uniform int32 tileMidX, uniform int32 tileMidY, // Subtile data (00, 10, 01, 11) uniform float subtileMinZ[], uniform float subtileMaxZ[], // G-buffer data uniform int32 gBufferWidth, uniform int32 gBufferHeight, // Camera data uniform float cameraProj_11, uniform float cameraProj_22, // Light Data uniform int32 lightIndices[], uniform int32 numLights, uniform float light_positionView_x_array[], uniform float light_positionView_y_array[], uniform float light_positionView_z_array[], uniform float light_attenuationEnd_array[], // Outputs uniform int32 subtileIndices[], uniform int32 subtileIndicesPitch, uniform int32 subtileNumLights[] ) { uniform float gBufferScale_x = 0.5f * (float)gBufferWidth; uniform float gBufferScale_y = 0.5f * (float)gBufferHeight; uniform float frustumPlanes_xy[2] = { -(cameraProj_11 * gBufferScale_x), (cameraProj_22 * gBufferScale_y) }; uniform float frustumPlanes_z[2] = { tileMidX - gBufferScale_x, tileMidY - gBufferScale_y }; // Normalize uniform float norm[2] = { rsqrt(frustumPlanes_xy[0] * frustumPlanes_xy[0] + frustumPlanes_z[0] * frustumPlanes_z[0]), rsqrt(frustumPlanes_xy[1] * frustumPlanes_xy[1] + frustumPlanes_z[1] * frustumPlanes_z[1]) }; frustumPlanes_xy[0] *= norm[0]; frustumPlanes_xy[1] *= norm[1]; frustumPlanes_z[0] *= norm[0]; frustumPlanes_z[1] *= norm[1]; // Initialize uniform int32 subtileLightOffset[4]; subtileLightOffset[0] = 0 * subtileIndicesPitch; subtileLightOffset[1] = 1 * subtileIndicesPitch; subtileLightOffset[2] = 2 * subtileIndicesPitch; subtileLightOffset[3] = 3 * subtileIndicesPitch; foreach (i = 0 ... numLights) { int32 lightIndex = lightIndices[i]; float light_positionView_x = light_positionView_x_array[lightIndex]; float light_positionView_y = light_positionView_y_array[lightIndex]; float light_positionView_z = light_positionView_z_array[lightIndex]; float light_attenuationEnd = light_attenuationEnd_array[lightIndex]; float light_attenuationEndNeg = -light_attenuationEnd; // Test lights again subtile z bounds bool inFrustum[4]; inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) && (subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg); inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) && (subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg); inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) && (subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg); inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) && (subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg); float dx = light_positionView_z * frustumPlanes_z[0] + light_positionView_x * frustumPlanes_xy[0]; float dy = light_positionView_z * frustumPlanes_z[1] + light_positionView_y * frustumPlanes_xy[1]; cif (abs(dx) > light_attenuationEnd) { bool positiveX = dx > 0.0f; inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile } cif (abs(dy) > light_attenuationEnd) { bool positiveY = dy > 0.0f; inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile } // Pack and store intersecting lights // TODO: Experiment with a loop here instead cif (inFrustum[0]) subtileLightOffset[0] += packed_store_active(&subtileIndices[subtileLightOffset[0]], lightIndex); cif (inFrustum[1]) subtileLightOffset[1] += packed_store_active(&subtileIndices[subtileLightOffset[1]], lightIndex); cif (inFrustum[2]) subtileLightOffset[2] += packed_store_active(&subtileIndices[subtileLightOffset[2]], lightIndex); cif (inFrustum[3]) subtileLightOffset[3] += packed_store_active(&subtileIndices[subtileLightOffset[3]], lightIndex); } subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch; subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch; subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch; subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch; }