;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Define the standard library builtins for the NOVEC target define(`MASK',`i1') define(`WIDTH',`1') ;; target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v16:16:16-v32:32:32-v64:64:64-v128:128:128-n16:32:64" ;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;; declare i32 @llvm.nvvm.read.ptx.sreg.tid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() nounwind readnone declare i32 @llvm.nvvm.read.ptx.sreg.warpsize() nounwind readnone define i32 @__tid_x() nounwind readnone alwaysinline { %tid = call i32 @llvm.nvvm.read.ptx.sreg.tid.x() ret i32 %tid } define i32 @__warpsize() nounwind readnone alwaysinline { ;; %tid = call i32 @llvm.nvvm.read.ptx.sreg.warpsize() ;; ret i32 %tid ret i32 32 } define i32 @__laneidx() nounwind readnone alwaysinline { %tid = tail call i32 @__tid_x() %lane = and i32 %tid, 31 ret i32 %lane; } define i32 @__ctaid_x() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.x() ret i32 %bid } define i32 @__ctaid_y() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.y() ret i32 %bid } define i32 @__ctaid_z() nounwind readnone alwaysinline { %bid = call i32 @llvm.nvvm.read.ptx.sreg.ctaid.z() ret i32 %bid } define i32 @__nctaid_x() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.x() ret i32 %nb } define i32 @__nctaid_y() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.y() ret i32 %nb } define i32 @__nctaid_z() nounwind readnone alwaysinline { %nb = call i32 @llvm.nvvm.read.ptx.sreg.nctaid.z() ret i32 %nb } ;;;;;;;; declare i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)*) declare i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p4i64(i64 addrspace(4)*) define i64* @__cvt_loc2gen(i64 addrspace(3)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)* %0) ret i64* %ptr } define i64* @__cvt_loc2gen_var(i64 addrspace(3)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p3i64(i64 addrspace(3)* %0) ret i64* %ptr } define i64* @__cvt_const2gen(i64 addrspace(4)*) nounwind readnone alwaysinline { %ptr = tail call i64* @llvm.nvvm.ptr.shared.to.gen.p0i64.p4i64(i64 addrspace(4)* %0) ret i64* %ptr } ;;;;;;;; ;; i32 define i32 @__shfl_i32_nvptx(i32, i32) nounwind readnone alwaysinline { %shfl = tail call i32 asm sideeffect "shfl.idx.b32 $0, $1, $2, 0x1f;", "=r,r,r"(i32 %0, i32 %1) nounwind readnone alwaysinline ret i32 %shfl } define i32 @__shfl_xor_i32_nvptx(i32, i32) nounwind readnone alwaysinline { %shfl = tail call i32 asm sideeffect "shfl.bfly.b32 $0, $1, $2, 0x1f;", "=r,r,r"(i32 %0, i32 %1) nounwind readnone alwaysinline ret i32 %shfl } ;; float define float @__shfl_float_nvptx(float, i32) nounwind readnone alwaysinline { %shfl = tail call float asm sideeffect "shfl.idx.b32 $0, $1, $2, 0x1f;", "=f,f,r"(float %0, i32 %1) nounwind readnone alwaysinline ret float %shfl } define float @__shfl_xor_float_nvptx(float, i32) nounwind readnone alwaysinline { %shfl = tail call float asm sideeffect "shfl.bfly.b32 $0, $1, $2, 0x1f;", "=f,f,r"(float %0, i32 %1) nounwind readnone alwaysinline ret float %shfl } ;;;;;;;;;;; min/max ;; float/double define float @__fminf_nvptx(float,float) nounwind readnone alwaysinline { %min = tail call float asm sideeffect "min.f32 $0, $1, $2;", "=f,f,f"(float %0, float %1) nounwind readnone alwaysinline ret float %min } define float @__fmaxf_nvptx(float,float) nounwind readnone alwaysinline { %max = tail call float asm sideeffect "max.f32 $0, $1, $2;", "=f,f,f"(float %0, float %1) nounwind readnone alwaysinline ret float %max } ;; int define(`int_minmax',` define $1 @__min_$1_signed($1,$1) nounwind readnone alwaysinline { %c = icmp slt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1_signed($1,$1) nounwind readnone alwaysinline { %c = icmp sgt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__min_$1_unsigned($1,$1) nounwind readnone alwaysinline { %c = icmp ult $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1_unsigned($1,$1) nounwind readnone alwaysinline { %c = icmp ugt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } ') int_minmax(i8); int_minmax(i16); int_minmax(i32); int_minmax(i64); ;; float/double define(`fp_minmax',` define $1 @__min_$1($1,$1) nounwind readnone alwaysinline { %c = fcmp olt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } define $1 @__max_$1($1,$1) nounwind readnone alwaysinline { %c = fcmp ogt $1 %0, %1 %r = select i1 %c, $1 %0, $1 %1 ret $1 %r } ') fp_minmax(float) fp_minmax(double) ;;;;;;;;; __shfl/__shfl_xor intrinsics ;; i8/i16/i64 define(`shfl32',` define $2 @$1_$2_nvptx($2, i32) nounwind readnone alwaysinline { %ext = zext $2 %0 to i32 %res = tail call i32 @$1_i32_nvptx(i32 %ext, i32 %1) %ret = trunc i32 %res to $2 ret $2 %ret } ') shfl32(__shfl, i8); shfl32(__shfl_xor, i8); shfl32(__shfl, i16); shfl32(__shfl_xor, i16); define(`shfl64',` define $2 @$1_$2_nvptx($2, i32) nounwind readnone alwaysinline { %in = bitcast $2 %0 to <2 x i32> %in0 = extractelement <2 x i32> %in, i32 0 %in1 = extractelement <2 x i32> %in, i32 1 %out0 = tail call i32 @$1_i32_nvptx(i32 %in0, i32 %1) %out1 = tail call i32 @$1_i32_nvptx(i32 %in1, i32 %1) %out2 = insertelement <2 x i32> undef, i32 %out0, i32 0 %out = insertelement <2 x i32> %out2, i32 %out1, i32 1 %ret = bitcast <2 x i32> %out to $2 ret $2 %ret } ') shfl64(__shfl, i64) shfl64(__shfl_xor, i64) shfl64(__shfl, double) shfl64(__shfl_xor, double) ;;;;;;;;;;;;; define i32 @__ballot_nvptx(i1) nounwind readnone alwaysinline { %conv = zext i1 %0 to i32 %res = tail call i32 asm sideeffect "{ .reg .pred %p1; setp.ne.u32 %p1, $1, 0; vote.ballot.b32 $0, %p1; }", "=r,r"(i32 %conv) nounwind readnone alwaysinline ret i32 %res } define i32 @__lanemask_lt_nvptx() nounwind readnone alwaysinline { %mask = tail call i32 asm sideeffect "mov.u32 $0, %lanemask_lt;", "=r"() nounwind readnone alwaysinline ret i32 %mask } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; tasking ;; this call allocate parameter buffer for kernel launch declare i64 @cudaGetParameterBuffer(i64, i64) nounwind define i8* @ISPCAlloc(i8**, i64 %size, i32 %align32) nounwind alwaysinline { entry: %call = tail call i32 @__tid_x() %call1 = tail call i32 @__warpsize() %sub = add nsw i32 %call1, -1 %and = and i32 %sub, %call %cmp = icmp eq i32 %and, 0 %align = zext i32 %align32 to i64 br i1 %cmp, label %if.then, label %if.end if.then: %ptri64tmp = call i64 @cudaGetParameterBuffer(i64 %align, i64 %size); br label %if.end if.end: %ptri64 = phi i64 [ %ptri64tmp, %if.then ], [ 0, %entry ] %ptr = inttoptr i64 %ptri64 to i8* ret i8* %ptr } ;; this actually launches kernel a kernel module asm " .extern .func (.param .b32 func_retval0) cudaLaunchDevice ( .param .b64 cudaLaunchDevice_param_0, .param .b64 cudaLaunchDevice_param_1, .param .align 4 .b8 cudaLaunchDevice_param_2[12], .param .align 4 .b8 cudaLaunchDevice_param_3[12], .param .b32 cudaLaunchDevice_param_4, .param .b64 cudaLaunchDevice_param_5 ); " define void @ISPCLaunch(i8**, i8* %func_ptr, i8* %func_args, i32 %ntx, i32 %nty, i32 %ntz) nounwind alwaysinline { entry: ;; only 1 lane must launch the kernel !!! %func_i64 = ptrtoint i8* %func_ptr to i64 %args_i64 = ptrtoint i8* %func_args to i64 ;; nbx = (%ntx-1)/(blocksize/warpsize) + 1 for blocksize=128 & warpsize=32 %ntxm1 = add nsw i32 %ntx, -1 ;; %ntxm1d4 = sdiv i32 %ntxm1, 4 %ntxm1d4 = ashr i32 %ntxm1, 2 %nbx = add nsw i32 %ntxm1d4, 1 %call = tail call i32 @__tid_x() %call1 = tail call i32 @__warpsize() %sub = add nsw i32 %call1, -1 %and = and i32 %sub, %call ;; if (laneIdx == 0) %cmp = icmp eq i32 %and, 0 br i1 %cmp, label %if.then, label %if.end if.then: %res_tmp = call i32 asm sideeffect "{ .param .b64 param0; st.param.b64 [param0+0], $1; .param .b64 param1; st.param.b64 [param1+0], $2; .param .align 4 .b8 param2[12]; st.param.b32 [param2+0], $3; st.param.b32 [param2+4], $4; st.param.b32 [param2+8], $5; .param .align 4 .b8 param3[12]; st.param.b32 [param3+0], $6; st.param.b32 [param3+4], $7; st.param.b32 [param3+8], $8; .param .b32 param4; st.param.b32 [param4+0], $9; .param .b64 param5; st.param.b64 [param5+0], $10; .param .b32 retval0; call.uni (retval0), cudaLaunchDevice, ( param0, param1, param2, param3, param4, param5 ); ld.param.b32 $0, [retval0+0]; } ", "=r, l,l, r,r,r, r,r,r, r,l"( i64 %func_i64,i64 %args_i64, i32 %nbx,i32 %nty,i32 %ntz, i32 128,i32 1,i32 1, i32 0,i64 0); br label %if.end if.end: ; preds = %if.then, %entry ;; %res = phi i32 [ %res_tmp, %if.then ], [ undef, %entry ] ret void } ;; this synchronizes kernel declare i32 @cudaDeviceSynchronize() nounwind define void @ISPCSync(i8*) nounwind alwaysinline { call i32 @cudaDeviceSynchronize() ret void; } ;;;;;;;;;;;;;; include(`util-nvptx.m4') stdlib_core() packed_load_and_store() int64minmax() rdrand_decls() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; broadcast/rotate/shuffle define_shuffles() ;; declare @__smear_float(float) nounwind readnone ;; declare @__smear_double(double) nounwind readnone ;; declare @__smear_i8(i8) nounwind readnone ;; declare @__smear_i16(i16) nounwind readnone ;; declare @__smear_i32(i32) nounwind readnone ;; declare @__smear_i64(i64) nounwind readnone ;; declare @__setzero_float() nounwind readnone ;; declare @__setzero_double() nounwind readnone ;; declare @__setzero_i8() nounwind readnone ;; declare @__setzero_i16() nounwind readnone ;; declare @__setzero_i32() nounwind readnone ;; declare @__setzero_i64() nounwind readnone ;; declare @__undef_float() nounwind readnone ;; declare @__undef_double() nounwind readnone ;; declare @__undef_i8() nounwind readnone ;; declare @__undef_i16() nounwind readnone ;; declare @__undef_i32() nounwind readnone ;; declare @__undef_i64() nounwind readnone ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; aos/soa aossoa() ;; dummy 1 wide vector ops define void @__aos_to_soa4_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> %v3, <1 x float> * noalias %out0, <1 x float> * noalias %out1, <1 x float> * noalias %out2, <1 x float> * noalias %out3) nounwind alwaysinline { store <1 x float> %v0, <1 x float > * %out0 store <1 x float> %v1, <1 x float > * %out1 store <1 x float> %v2, <1 x float > * %out2 store <1 x float> %v3, <1 x float > * %out3 ret void } define void @__soa_to_aos4_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> %v3, <1 x float> * noalias %out0, <1 x float> * noalias %out1, <1 x float> * noalias %out2, <1 x float> * noalias %out3) nounwind alwaysinline { call void @__aos_to_soa4_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> %v3, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2, <1 x float> * %out3) ret void } define void @__aos_to_soa3_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2) { store <1 x float> %v0, <1 x float > * %out0 store <1 x float> %v1, <1 x float > * %out1 store <1 x float> %v2, <1 x float > * %out2 ret void } define void @__soa_to_aos3_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2) { call void @__aos_to_soa3_float1(<1 x float> %v0, <1 x float> %v1, <1 x float> %v2, <1 x float> * %out0, <1 x float> * %out1, <1 x float> * %out2) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; half conversion routines declare float @llvm.convert.from.fp16(i16) nounwind readnone declare i16 @llvm.convert.to.fp16(float) nounwind readnone define float @__half_to_float_uniform(i16 %v) nounwind readnone alwaysinline { ;; %res = call float @llvm.convert.from.fp16(i16 %v) %res = tail call float asm sideeffect "{ .reg .b16 %tmp; mov.b16 %tmp, $1; cvt.f32.f16 $0, %tmp; }", "=f,h"(i16 %v) nounwind readnone alwaysinline ret float %res } define i16 @__float_to_half_uniform(float %v) nounwind readnone alwaysinline { ;; this will break the compiler, use inline asm similarly to above case %half = call i16 @llvm.convert.to.fp16(float %v) ret i16 %half } define @__half_to_float_varying( %v) nounwind readnone alwaysinline { %el = extractelement <1 x i16> %v, i32 0 %sf = call float @__half_to_float_uniform(i16 %el) %vf = insertelement <1 x float> undef, float %sf, i32 0 ret <1 x float> %vf; } define @__float_to_half_varying( %v) nounwind readnone alwaysinline { %el = extractelement <1 x float> %v, i32 0 %sh = call i16 @__float_to_half_uniform(float %el) %vh = insertelement <1 x i16> undef, i16 %sh, i32 0 ret <1 x i16> %vh; } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; math declare void @__fastmath() nounwind ;; round/floor/ceil declare float @__round_uniform_float(float) nounwind readnone declare float @__floor_uniform_float(float) nounwind readnone declare float @__ceil_uniform_float(float) nounwind readnone declare double @__round_uniform_double(double) nounwind readnone declare double @__floor_uniform_double(double) nounwind readnone declare double @__ceil_uniform_double(double) nounwind readnone define <1 x float> @__round_varying_float(<1 x float>) nounwind readonly alwaysinline { %float_to_int_bitcast.i.i.i.i = bitcast <1 x float> %0 to <1 x i32> %bitop.i.i = and <1 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i = xor <1 x i32> %float_to_int_bitcast.i.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i40.i = bitcast <1 x i32> %bitop.i to <1 x float> %binop.i = fadd <1 x float> %int_to_float_bitcast.i.i40.i, %binop21.i = fadd <1 x float> %binop.i, %float_to_int_bitcast.i.i.i = bitcast <1 x float> %binop21.i to <1 x i32> %bitop31.i = xor <1 x i32> %float_to_int_bitcast.i.i.i, %bitop.i.i %int_to_float_bitcast.i.i.i = bitcast <1 x i32> %bitop31.i to <1 x float> ret <1 x float> %int_to_float_bitcast.i.i.i } define <1 x float> @__floor_varying_float(<1 x float>) nounwind readonly alwaysinline { %calltmp.i = tail call <1 x float> @__round_varying_float(<1 x float> %0) nounwind %bincmp.i = fcmp ogt <1 x float> %calltmp.i, %0 %val_to_boolvec32.i = sext <1 x i1> %bincmp.i to <1 x i32> %bitop.i = and <1 x i32> %val_to_boolvec32.i, %int_to_float_bitcast.i.i.i = bitcast <1 x i32> %bitop.i to <1 x float> %binop.i = fadd <1 x float> %calltmp.i, %int_to_float_bitcast.i.i.i ret <1 x float> %binop.i } declare @__ceil_varying_float() nounwind readnone declare @__round_varying_double() nounwind readnone declare @__floor_varying_double() nounwind readnone declare @__ceil_varying_double() nounwind readnone ;; min/max uniform ;; declare float @__max_uniform_float(float, float) nounwind readnone ;; declare float @__min_uniform_float(float, float) nounwind readnone define float @__max_uniform_float(float, float) nounwind readonly alwaysinline { %d = fcmp ogt float %0, %1 %r = select i1 %d, float %0, float %1 ret float %r } define float @__min_uniform_float(float, float) nounwind readonly alwaysinline { %d = fcmp olt float %0, %1 %r = select i1 %d, float %0, float %1 ret float %r } ;; declare i32 @__min_uniform_int32(i32, i32) nounwind readnone ;; declare i32 @__max_uniform_int32(i32, i32) nounwind readnone define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp slt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { %c = icmp sgt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;; declare i32 @__min_uniform_uint32(i32, i32) nounwind readnone ;; declare i32 @__max_uniform_uint32(i32, i32) nounwind readnone define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ult i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { %c = icmp ugt i32 %0, %1 %r = select i1 %c, i32 %0, i32 %1 ret i32 %r } ;; declare i64 @__min_uniform_int64(i64, i64) nounwind readnone ;; declare i64 @__max_uniform_int64(i64, i64) nounwind readnone ;; declare i64 @__min_uniform_uint64(i64, i64) nounwind readnone ;; declare i64 @__max_uniform_uint64(i64, i64) nounwind readnone ;; declare double @__min_uniform_double(double, double) nounwind readnone ;; declare double @__max_uniform_double(double, double) nounwind readnone define double @__max_uniform_double(double, double) nounwind readonly alwaysinline { %d = fcmp ogt double %0, %1 %r = select i1 %d, double %0, double %1 ret double %r } define double @__min_uniform_double(double, double) nounwind readonly alwaysinline { %d = fcmp olt double %0, %1 %r = select i1 %d, double %0, double %1 ret double %r } ;; min/max uniform ;; /* float */ define <1 x float> @__max_varying_float(<1 x float>, <1 x float>) nounwind readonly alwaysinline { %a = extractelement <1 x float> %0, i32 0 %b = extractelement <1 x float> %1, i32 0 %r = call float @__max_uniform_float(float %a, float %b) %rv = insertelement <1 x float> undef, float %r, i32 0 ret <1 x float> %rv } define <1 x float> @__min_varying_float(<1 x float>, <1 x float>) nounwind readonly alwaysinline { %a = extractelement <1 x float> %0, i32 0 %b = extractelement <1 x float> %1, i32 0 %r = call float @__min_uniform_float(float %a, float %b) %rv = insertelement <1 x float> undef, float %r, i32 0 ret <1 x float> %rv } ;; /* int32 */ define <1 x i32> @__max_varying_int32(<1 x i32>, <1 x i32>) nounwind readonly alwaysinline { %a = extractelement <1 x i32> %0, i32 0 %b = extractelement <1 x i32> %1, i32 0 %r = call i32 @__max_uniform_int32(i32 %a, i32 %b) %rv = insertelement <1 x i32> undef, i32 %r, i32 0 ret <1 x i32> %rv } define <1 x i32> @__min_varying_int32(<1 x i32>, <1 x i32>) nounwind readonly alwaysinline { %a = extractelement <1 x i32> %0, i32 0 %b = extractelement <1 x i32> %1, i32 0 %r = call i32 @__min_uniform_int32(i32 %a, i32 %b) %rv = insertelement <1 x i32> undef, i32 %r, i32 0 ret <1 x i32> %rv } ;; /* uint32 */ declare @__min_varying_uint32(, ) nounwind readnone declare @__max_varying_uint32(, ) nounwind readnone ;; declare @__min_varying_int64(, ) nounwind readnone ;; declare @__max_varying_int64(, ) nounwind readnone ;; declare @__min_varying_uint64(, ) nounwind readnone ;; declare @__max_varying_uint64(, ) nounwind readnone declare @__min_varying_double(, ) nounwind readnone declare @__max_varying_double(, ) nounwind readnone ;; sqrt/rsqrt/rcp declare float @llvm.nvvm.rsqrt.approx.f(float %f) nounwind readonly alwaysinline declare float @llvm.nvvm.sqrt.f(float %f) nounwind readonly alwaysinline declare double @llvm.nvvm.rsqrt.approx.d(double %f) nounwind readonly alwaysinline declare double @llvm.nvvm.sqrt.d(double %f) nounwind readonly alwaysinline ;; declare float @__rcp_uniform_float(float) nounwind readnone define float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; uniform float iv = extract(__rcp_u(v), 0); ; return iv * (2. - v * iv); %ret = fdiv float 1.,%0 ; %ret = tail call float asm sideeffect "rcp.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } ;; declare float @__sqrt_uniform_float(float) nounwind readnone define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { %ret = call float @llvm.nvvm.sqrt.f(float %0) ; %ret = tail call float asm sideeffect "sqrt.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } ;; declare float @__rsqrt_uniform_float(float) nounwind readnone define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { %ret = call float @llvm.nvvm.rsqrt.approx.f(float %0) ; %ret = tail call float asm sideeffect "rsqrt.approx.ftz.f32 $0, $1;", "=f,f"(float %0) nounwind readnone alwaysinline ret float %ret } define @__rcp_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__rcp_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } define @__rsqrt_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__rsqrt_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } define @__sqrt_varying_float() nounwind readnone alwaysinline { %v = extractelement <1 x float> %0, i32 0 %r = call float @__sqrt_uniform_float(float %v) %rv = insertelement <1 x float> undef, float %r, i32 0 ret %rv } ;; declare double @__sqrt_uniform_double(double) nounwind readnone define double @__sqrt_uniform_double(double) nounwind readonly alwaysinline { %ret = call double @llvm.nvvm.sqrt.d(double %0) ret double %ret } declare @__sqrt_varying_double() nounwind readnone ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; population count declare i32 @llvm.ctpop.i32(i32) nounwind readnone define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call ;; %res = tail call i32 asm sideeffect "popc.b32 $0, $1;", "=r,r"(i32 %0) nounwind readnone alwaysinline ;; ret i32 %res } declare i64 @llvm.ctpop.i64(i64) nounwind readnone define i64 @__popcnt_int64(i64) nounwind readonly alwaysinline { %call = call i64 @llvm.ctpop.i64(i64 %0) ret i64 %call } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; binary prefix sum define i64 @__warpBinExclusiveScan(i1 %p) nounwind readonly alwaysinline { entry: %call = call i32 @__ballot_nvptx(i1 zeroext %p) %call1 = call i32 @__popcnt_int32(i32 %call) %call2 = call i32 @__lanemask_lt_nvptx() %and = and i32 %call2, %call %call3 = call i32 @__popcnt_int32(i32 %and) %retval.sroa.1.4.insert.ext.i = zext i32 %call3 to i64 %retval.sroa.1.4.insert.shift.i = shl nuw i64 %retval.sroa.1.4.insert.ext.i, 32 %retval.sroa.0.0.insert.ext.i = zext i32 %call1 to i64 %retval.sroa.0.0.insert.insert.i = or i64 %retval.sroa.1.4.insert.shift.i, %retval.sroa.0.0.insert.ext.i ret i64 %retval.sroa.0.0.insert.insert.i } ctlztz() ; FIXME: need either to wire these up to the 8-wide SVML entrypoints, ; or, use the macro to call the 4-wide ones twice with our 8-wide ; vectors... ;; svml is not support in PTX, will generate linking error include(`svml.m4') svml_stubs(float,f,WIDTH) svml_stubs(double,d,WIDTH) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; reductions define i64 @__movmsk(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %v64 = zext i1 %v to i64 ret i64 %v64 } define i64 @__movmsk_ptx(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %v0 = call i32 @__ballot_nvptx(i1 %v) %v64 = zext i32 %v0 to i64 ret i64 %v64 } define i1 @__any(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp ne i32 %res, 0 ret i1 %cmp } define i1 @__all(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp eq i32 %res, 31 ret i1 %cmp } define i1 @__none(<1 x i1>) nounwind readnone alwaysinline { %v = extractelement <1 x i1> %0, i32 0 %res = call i32 @__ballot_nvptx(i1 %v) %cmp = icmp eq i32 %res, 0 ret i1 %cmp } ;;;;;;;;; reductions i8 define i16 @__reduce_add_int8(<1 x i8> %v) nounwind readnone alwaysinline { %value8 = extractelement <1 x i8> %v, i32 0 %value = zext i8 %value8 to i16 %call = tail call i16 @__shfl_xor_i16_nvptx(i16 %value, i32 16) %call1 = add i16 %call, %value %call.1 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1, i32 8) %call1.1 = add i16 %call1, %call.1 %call.2 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.1, i32 4) %call1.2 = add i16 %call1.1, %call.2 %call.3 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.2, i32 2) %call1.3 = add i16 %call1.2, %call.3 %call.4 = tail call i16 @__shfl_xor_i16_nvptx(i16 %call1.3, i32 1) %call1.4 = add i16 %call1.3, %call.4 ret i16 %call1.4 } ;;;;;;;;; reductions i16 define i32 @__reduce_add_int16(<1 x i16> %v) nounwind readnone alwaysinline { %value16 = extractelement <1 x i16> %v, i32 0 %value = zext i16 %value16 to i32 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = add i32 %call, %value %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = add i32 %call1, %call.1 %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = add i32 %call1.1, %call.2 %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = add i32 %call1.2, %call.3 %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = add i32 %call1.3, %call.4 ret i32 %call1.4 } ;;;;;;;;; reductions float define float @__reduce_add_float(<1 x float> %v) nounwind readonly alwaysinline { %value = extractelement <1 x float> %v, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = fadd float %call, %value %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = fadd float %call1, %call.1 %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = fadd float %call1.1, %call.2 %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = fadd float %call1.2, %call.3 %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = fadd float %call1.3, %call.4 ret float %call1.4 } define float @__reduce_min_float(<1 x float>) nounwind readnone alwaysinline { %value = extractelement <1 x float> %0, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = tail call float @__fminf_nvptx(float %value, float %call) %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = tail call float @__fminf_nvptx(float %call1, float %call.1) %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = tail call float @__fminf_nvptx(float %call1.1, float %call.2) %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = tail call float @__fminf_nvptx(float %call1.2, float %call.3) %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = tail call float @__fminf_nvptx(float %call1.3, float %call.4) ret float %call1.4 } define float @__reduce_max_float(<1 x float>) nounwind readnone alwaysinline { %value = extractelement <1 x float> %0, i32 0 %call = tail call float @__shfl_xor_float_nvptx(float %value, i32 16) %call1 = tail call float @__fmaxf_nvptx(float %value, float %call) %call.1 = tail call float @__shfl_xor_float_nvptx(float %call1, i32 8) %call1.1 = tail call float @__fmaxf_nvptx(float %call1, float %call.1) %call.2 = tail call float @__shfl_xor_float_nvptx(float %call1.1, i32 4) %call1.2 = tail call float @__fmaxf_nvptx(float %call1.1, float %call.2) %call.3 = tail call float @__shfl_xor_float_nvptx(float %call1.2, i32 2) %call1.3 = tail call float @__fmaxf_nvptx(float %call1.2, float %call.3) %call.4 = tail call float @__shfl_xor_float_nvptx(float %call1.3, i32 1) %call1.4 = tail call float @__fmaxf_nvptx(float %call1.3, float %call.4) ret float %call1.4 } ;;;;;;;;; reductions int32 define i32 @__reduce_add_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = add i32 %call, %value %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 =add i32 %call1, %call.1 %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = add i32 %call1.1, %call.2 %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = add i32 %call1.2, %call.3 %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = add i32 %call1.3, %call.4 ret i32 %call1.4 } define i32 @__reduce_min_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__min_i32_signed(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__min_i32_signed(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__min_i32_signed(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__min_i32_signed(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__min_i32_signed(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } define i32 @__reduce_max_int32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__max_i32_signed(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__max_i32_signed(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__max_i32_signed(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__max_i32_signed(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__max_i32_signed(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } ;;;;;;;;; reductions uint32 define i32 @__reduce_min_uint32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__min_i32_unsigned(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__min_i32_unsigned(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__min_i32_unsigned(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__min_i32_unsigned(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__min_i32_unsigned(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } define i32 @__reduce_max_uint32(<1 x i32>) nounwind readnone alwaysinline { %value = extractelement <1 x i32> %0, i32 0 %call = tail call i32 @__shfl_xor_i32_nvptx(i32 %value, i32 16) %call1 = tail call i32 @__max_i32_unsigned(i32 %value, i32 %call) %call.1 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1, i32 8) %call1.1 = tail call i32 @__max_i32_unsigned(i32 %call1, i32 %call.1) %call.2 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.1, i32 4) %call1.2 = tail call i32 @__max_i32_unsigned(i32 %call1.1, i32 %call.2) %call.3 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.2, i32 2) %call1.3 = tail call i32 @__max_i32_unsigned(i32 %call1.2, i32 %call.3) %call.4 = tail call i32 @__shfl_xor_i32_nvptx(i32 %call1.3, i32 1) %call1.4 = tail call i32 @__max_i32_unsigned(i32 %call1.3, i32 %call.4) ret i32 %call1.4 } ;;;;;;;;; reductions double define double @__reduce_add_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = fadd double %call, %value %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = fadd double %call1, %call.1 %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = fadd double %call1.1, %call.2 %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = fadd double %call1.2, %call.3 %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = fadd double %call1.3, %call.4 ret double %call1.4 } define double @__reduce_min_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = tail call double @__min_double(double %value, double %call) %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = tail call double @__min_double(double %call1, double %call.1) %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = tail call double @__min_double(double %call1.1, double %call.2) %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = tail call double @__min_double(double %call1.2, double %call.3) %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = tail call double @__min_double(double %call1.3, double %call.4) ret double %call1.4 } define double @__reduce_max_double(<1 x double>) nounwind readnone alwaysinline { %value = extractelement <1 x double> %0, i32 0 %call = tail call double @__shfl_xor_double_nvptx(double %value, i32 16) %call1 = tail call double @__max_double(double %value, double %call) %call.1 = tail call double @__shfl_xor_double_nvptx(double %call1, i32 8) %call1.1 = tail call double @__max_double(double %call1, double %call.1) %call.2 = tail call double @__shfl_xor_double_nvptx(double %call1.1, i32 4) %call1.2 = tail call double @__max_double(double %call1.1, double %call.2) %call.3 = tail call double @__shfl_xor_double_nvptx(double %call1.2, i32 2) %call1.3 = tail call double @__max_double(double %call1.2, double %call.3) %call.4 = tail call double @__shfl_xor_double_nvptx(double %call1.3, i32 1) %call1.4 = tail call double @__max_double(double %call1.3, double %call.4) ret double %call1.4 } ;;;;;;;;; reductions int64 define i64 @__reduce_add_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = add i64 %call, %value %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 =add i64 %call1, %call.1 %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = add i64 %call1.1, %call.2 %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = add i64 %call1.2, %call.3 %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = add i64 %call1.3, %call.4 ret i64 %call1.4 } define i64 @__reduce_min_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__min_i64_signed(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__min_i64_signed(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__min_i64_signed(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__min_i64_signed(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__min_i64_signed(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_max_int64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__max_i64_signed(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__max_i64_signed(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__max_i64_signed(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__max_i64_signed(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__max_i64_signed(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_min_uint64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__min_i64_unsigned(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__min_i64_unsigned(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__min_i64_unsigned(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__min_i64_unsigned(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__min_i64_unsigned(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } define i64 @__reduce_max_uint64(<1 x i64>) nounwind readnone alwaysinline { %value = extractelement <1 x i64> %0, i32 0 %call = tail call i64 @__shfl_xor_i64_nvptx(i64 %value, i32 16) %call1 = tail call i64 @__max_i64_unsigned(i64 %value, i64 %call) %call.1 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1, i32 8) %call1.1 = tail call i64 @__max_i64_unsigned(i64 %call1, i64 %call.1) %call.2 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.1, i32 4) %call1.2 = tail call i64 @__max_i64_unsigned(i64 %call1.1, i64 %call.2) %call.3 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.2, i32 2) %call1.3 = tail call i64 @__max_i64_unsigned(i64 %call1.2, i64 %call.3) %call.4 = tail call i64 @__shfl_xor_i64_nvptx(i64 %call1.3, i32 1) %call1.4 = tail call i64 @__max_i64_unsigned(i64 %call1.3, i64 %call.4) ret i64 %call1.4 } ;;;; reduce equal declare i1 @__reduce_equal_int32(<1 x i32> %vv, i32 * %samevalue, <1 x i1> %mask) nounwind alwaysinline; declare i1 @__reduce_equal_float(<1 x float> %vv, float * %samevalue, <1 x i1> %mask) nounwind alwaysinline; declare i1 @__reduce_equal_int64(<1 x i64> %vv, i64 * %samevalue, <1 x i1> %mask) nounwind alwaysinline; declare i1 @__reduce_equal_double(<1 x double> %vv, double * %samevalue, <1 x i1> %mask) nounwind alwaysinline; ;;;;;;;;;;; shuffle define(`shuffle1', ` define <1 x $1> @__shuffle_$1(<1 x $1>, <1 x i32>) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %lane = extractelement <1 x i32> %1, i32 0 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %lane) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shuffle1(i8) shuffle1(i16) shuffle1(i32) shuffle1(i64) shuffle1(float) shuffle1(double) define(`shuffle2',` define <1 x $1> @__shuffle2_$1(<1 x $1>, <1 x $1>, <1 x i32>) nounwind readnone alwaysinline { %val1 = extractelement <1 x $1> %0, i32 0 %val2 = extractelement <1 x $1> %1, i32 0 ;; fetch both values %lane = extractelement <1 x i32> %2, i32 0 %lane_mask = and i32 %lane, 31 %ret1 = tail call $1 @__shfl_$1_nvptx($1 %val1, i32 %lane_mask); %ret2 = tail call $1 @__shfl_$1_nvptx($1 %val2, i32 %lane_mask); ;; select the correct one %c = icmp slt i32 %lane, 32 %rets = select i1 %c, $1 %ret1, $1 %ret2 %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shuffle2(i8) shuffle2(i16) shuffle2(i32) shuffle2(i64) shuffle2(float) shuffle2(double) define(`shift',` define <1 x $1> @__shift_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %tid = tail call i32 @__tid_x() %lane = and i32 %tid, 31 %src = add i32 %lane, %1 %ret = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %src) %c1 = icmp sge i32 %src, 0 %c2 = icmp slt i32 %src, 32 %c = and i1 %c1, %c2 %rets = select i1 %c, $1 %ret, $1 zeroinitializer %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') shift(i8) shift(i16) shift(i32) shift(i64) shift(float) shift(double) define(`rotate', ` define <1 x $1> @__rotate_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %tid = tail call i32 @__tid_x() %src = add i32 %tid, %1 %lane = and i32 %src, 31 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %lane) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') rotate(i8) rotate(i16) rotate(i32) rotate(i64) rotate(float) rotate(double) define(`broadcast', ` define <1 x $1> @__broadcast_$1(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %rets = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %1) %retv = insertelement <1 x $1> undef, $1 %rets, i32 0 ret <1 x $1> %retv } ') broadcast(i8) broadcast(i16) broadcast(i32) broadcast(i64) broadcast(float) broadcast(double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; prefix sum stuff define i32 @__shfl_scan_add_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p add.u32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_add_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, i32 %v0, i32 0 %s1 = tail call i32 @__shfl_scan_add_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_add_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_add_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_add_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_add_step_i32(i32 %s4, i32 16); %rets = sub i32 %s5, %v %retv = insertelement <1 x i32> undef, i32 %rets, i32 0 ret <1 x i32> %retv } ;; define i32 @__shfl_scan_or_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p or.b32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_or_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v1 = select i1 %mask, i32 %v0, i32 0 ;; shfl-up by one for exclusive scan %v = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, 1, 0; @!p mov.u32 r0, 0; mov.u32 $0, r0; }","=r,r"(i32 %v1); %s1 = tail call i32 @__shfl_scan_or_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_or_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_or_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_or_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_or_step_i32(i32 %s4, i32 16); %retv = insertelement <1 x i32> undef, i32 %s5, i32 0 ret <1 x i32> %retv } ;; define i32 @__shfl_scan_and_step_i32(i32 %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, $2, 0; @p and.b32 r0, r0, $3; mov.u32 $0, r0; }", "=r,r,r,r"(i32 %partial, i32 %up_offset, i32 %partial) nounwind readnone alwaysinline ret i32 %result; } define <1 x i32> @__exclusive_scan_and_i32(<1 x i32>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x i32> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v1 = select i1 %mask, i32 %v0, i32 -1 ;; shfl-up by one for exclusive scan %v = tail call i32 asm sideeffect "{.reg .u32 r0; .reg .pred p; shfl.up.b32 r0|p, $1, 1, 0; @!p mov.u32 r0, -1; mov.u32 $0, r0; }","=r,r"(i32 %v1); %s1 = tail call i32 @__shfl_scan_and_step_i32(i32 %v, i32 1); %s2 = tail call i32 @__shfl_scan_and_step_i32(i32 %s1, i32 2); %s3 = tail call i32 @__shfl_scan_and_step_i32(i32 %s2, i32 4); %s4 = tail call i32 @__shfl_scan_and_step_i32(i32 %s3, i32 8); %s5 = tail call i32 @__shfl_scan_and_step_i32(i32 %s4, i32 16); %retv = insertelement <1 x i32> undef, i32 %s5, i32 0 ret <1 x i32> %retv } define float @__shfl_scan_add_step_float(float %partial, i32 %up_offset) nounwind readnone alwaysinline { %result = tail call float asm sideeffect "{.reg .f32 f0; .reg .pred p; shfl.up.b32 f0|p, $1, $2, 0; @p add.f32 f0, f0, $3; mov.f32 $0, f0; }", "=f,f,r,f"(float %partial, i32 %up_offset, float %partial) nounwind readnone alwaysinline ret float %result; } define <1 x float> @__exclusive_scan_add_float(<1 x float>, <1 x i1>) nounwind readnone alwaysinline { %v0 = extractelement <1 x float> %0, i32 0 %mask = extractelement <1 x i1 > %1, i32 0 %v = select i1 %mask, float %v0, float zeroinitializer %s1 = tail call float @__shfl_scan_add_step_float(float %v, i32 1); %s2 = tail call float @__shfl_scan_add_step_float(float %s1, i32 2); %s3 = tail call float @__shfl_scan_add_step_float(float %s2, i32 4); %s4 = tail call float @__shfl_scan_add_step_float(float %s3, i32 8); %s5 = tail call float @__shfl_scan_add_step_float(float %s4, i32 16); %rets = fsub float %s5, %v %retv = insertelement <1 x float> undef, float %rets, i32 0 ret <1 x float> %retv } declare <1 x double> @__exclusive_scan_add_double(<1 x double>, <1 x i1>) nounwind readnone alwaysinline declare <1 x i64> @__exclusive_scan_add_i64(<1 x i64>, <1 x i1>) nounwind readnone alwaysinline declare <1 x i64> @__exclusive_scan_and_i64(<1 x i64>, <1 x i1>) nounwind readnone alwaysinline declare <1 x i64> @__exclusive_scan_or_i64(<1 x i64>, <1 x i1>) nounwind readnone alwaysinline ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unaligned loads/loads+broadcasts masked_load(i8, 1) masked_load(i16, 2) masked_load(i32, 4) masked_load(float, 4) masked_load(i64, 8) masked_load(double, 8) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; masked store gen_masked_store(i8) gen_masked_store(i16) gen_masked_store(i32) gen_masked_store(float) gen_masked_store(i64) gen_masked_store(double) define void @__masked_store_blend_i8(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i16(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i32(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_float(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_i64(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } define void @__masked_store_blend_double(* nocapture, , ) nounwind alwaysinline { %v = load * %0 %v1 = select %2, %1, %v store %v1, * %0 ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; gather/scatter ; define these with the macros from stdlib.m4 gen_gather_factored(i8) gen_gather_factored(i16) gen_gather_factored(i32) gen_gather_factored(float) gen_gather_factored(i64) gen_gather_factored(double) gen_scatter(i8) gen_scatter(i16) gen_scatter(i32) gen_scatter(float) gen_scatter(i64) gen_scatter(double) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; prefetch define_prefetches() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int8/int16 builtins define_avgs() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; vector ops define(`extract_insert',` define $1 @__extract_$2(<1 x $1>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x $1> %0, i32 0 %extract = tail call $1 @__shfl_$1_nvptx($1 %val, i32 %1) ret $1 %extract } define <1 x $1> @__insert_$2(<1 x $1>, i32, $1) nounwind readnone alwaysinline { %orig = extractelement <1 x $1> %0, i32 0 %lane = call i32 @__laneidx() %c = icmp eq i32 %lane, %1 %val = select i1 %c, $1 %2, $1 %orig %insert = insertelement <1 x $1> %0, $1 %val, i32 0 ret <1 x $1> %insert } ') extract_insert(i8, int8) extract_insert(i16, int16) extract_insert(i32, int32) extract_insert(i64, int64) extract_insert(float, float) extract_insert(double, double) define i8* @__extract_void(<1 x i8*>, i32) nounwind readnone alwaysinline { %val = extractelement <1 x i8*> %0, i32 0 %b64 = ptrtoint i8* %val to i64 %extract64 = tail call i64 @__shfl_i64_nvptx(i64 %b64, i32 %1) %extract = inttoptr i64 %extract64 to i8* ret i8* %extract } define <1 x i8*> @__insert_void(<1 x i8*>, i32, i8*) nounwind readnone alwaysinline { %orig = extractelement <1 x i8*> %0, i32 0 %lane = call i32 @__laneidx() %c = icmp eq i32 %lane, %1 %val = select i1 %c, i8* %2, i8* %orig %insert = insertelement <1 x i8*> %0, i8* %val, i32 0 ret <1 x i8*> %insert }