/* Copyright (c) 2010-2015, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @file ctx.h @brief %Declaration of the FunctionEmitContext class */ #ifndef ISPC_CTX_H #define ISPC_CTX_H 1 #include "ispc.h" #include #if ISPC_LLVM_VERSION == ISPC_LLVM_3_2 #include #include #else // 3.3+ #include #include #endif #if ISPC_LLVM_VERSION <= ISPC_LLVM_3_4 #include #include #else // 3.5+ #include #include #endif struct CFInfo; /** FunctionEmitContext is one of the key classes in ispc; it is used to help with emitting the intermediate representation of a function during compilation. It carries information the current program context during IR emission (e.g. the basic block into which instructions should be added; or, the current source file and line number, so debugging symbols can be correctly generated). This class also provides a number of helper routines that are useful for code that emits IR. */ class FunctionEmitContext { public: /** Create a new FunctionEmitContext. @param function The Function object representing the function @param funSym Symbol that corresponds to the function @param llvmFunction LLVM function in the current module that corresponds to the function @param firstStmtPos Source file position of the first statement in the function */ FunctionEmitContext(Function *function, Symbol *funSym, llvm::Function *llvmFunction, SourcePos firstStmtPos); ~FunctionEmitContext(); /** Returns the Function * corresponding to the function that we're currently generating code for. */ const Function *GetFunction() const; /** @name Current basic block management @{ */ /** Returns the current basic block pointer */ llvm::BasicBlock *GetCurrentBasicBlock(); /** Set the given llvm::BasicBlock to be the basic block to emit forthcoming instructions into. */ void SetCurrentBasicBlock(llvm::BasicBlock *bblock); /** @name Mask management @{ */ /** Returns the mask value at entry to the current function. */ llvm::Value *GetFunctionMask(); /** Returns the mask value corresponding to "varying" control flow within the current function. (i.e. this doesn't include the effect of the mask at function entry. */ llvm::Value *GetInternalMask(); /** Returns the complete current mask value--i.e. the logical AND of the function entry mask and the internal mask. */ llvm::Value *GetFullMask(); /** Returns a pointer to storage in memory that stores the current full mask. */ llvm::Value *GetFullMaskPointer(); /** Provides the value of the mask at function entry */ void SetFunctionMask(llvm::Value *val); /** Sets the internal mask to a new value */ void SetInternalMask(llvm::Value *val); /** Sets the internal mask to (oldMask & val) */ void SetInternalMaskAnd(llvm::Value *oldMask, llvm::Value *val); /** Sets the internal mask to (oldMask & ~val) */ void SetInternalMaskAndNot(llvm::Value *oldMask, llvm::Value *test); /** Emits a branch instruction to the basic block btrue if any of the lanes of current mask are on and bfalse if none are on. */ void BranchIfMaskAny(llvm::BasicBlock *btrue, llvm::BasicBlock *bfalse); /** Emits a branch instruction to the basic block btrue if all of the lanes of current mask are on and bfalse if none are on. */ void BranchIfMaskAll(llvm::BasicBlock *btrue, llvm::BasicBlock *bfalse); /** Emits a branch instruction to the basic block btrue if none of the lanes of current mask are on and bfalse if none are on. */ void BranchIfMaskNone(llvm::BasicBlock *btrue, llvm::BasicBlock *bfalse); /** @} */ /** @name Control flow management @{ */ /** Notifies the FunctionEmitContext that we're starting emission of an 'if' statement with a uniform test. */ void StartUniformIf(); /** Notifies the FunctionEmitContext that we're starting emission of an 'if' statement with a varying test. The value of the mask going into the 'if' statement is provided in the oldMask parameter. */ void StartVaryingIf(llvm::Value *oldMask); /** Notifies the FunctionEmitConitext that we're done emitting the IR for an 'if' statement. */ void EndIf(); /** Notifies the FunctionEmitContext that we're starting to emit IR for a loop. Basic blocks are provides for where 'break' and 'continue' statements should jump to (if all running lanes want to break or continue), uniformControlFlow indicates whether the loop condition is 'uniform'. */ void StartLoop(llvm::BasicBlock *breakTarget, llvm::BasicBlock *continueTarget, bool uniformControlFlow); /** Informs FunctionEmitContext of the value of the mask at the start of a loop body or switch statement. */ void SetBlockEntryMask(llvm::Value *mask); /** Informs FunctionEmitContext that code generation for a loop is finished. */ void EndLoop(); /** Indicates that code generation for a 'foreach', 'foreach_tiled', 'foreach_active', or 'foreach_unique' loop is about to start. */ enum ForeachType { FOREACH_REGULAR, FOREACH_ACTIVE, FOREACH_UNIQUE }; void StartForeach(ForeachType ft); void EndForeach(); /** Emit code for a 'break' statement in a loop. If doCoherenceCheck is true, then if we're in a 'varying' loop, code will be emitted to see if all of the lanes want to break, in which case a jump to the break target will be taken. (For 'uniform' loops, the jump is always done). */ void Break(bool doCoherenceCheck); /** Emit code for a 'continue' statement in a loop. If doCoherenceCheck is true, then if we're in a 'varying' loop, code will be emitted to see if all of the lanes want to continue, in which case a jump to the continue target will be taken. (For 'uniform' loops, the jump is always done). */ void Continue(bool doCoherenceCheck); /** This method is called by code emitting IR for a loop at the end of the loop body; it restores the lanes of the mask that executed a 'continue' statement when going through the loop body in the previous iteration. */ void RestoreContinuedLanes(); /** This method is called by code emitting IR for a loop. It clears any lanes that contained a break since the mask has been updated to take them into account. This is necessary as all the bail out checks for breaks are meant to only deal with lanes breaking on the current iteration. */ void ClearBreakLanes(); /** Indicates that code generation for a "switch" statement is about to start. isUniform indicates whether the "switch" value is uniform, and bbAfterSwitch gives the basic block immediately following the "switch" statement. (For example, if the switch condition is uniform, we jump here upon executing a "break" statement.) */ void StartSwitch(bool isUniform, llvm::BasicBlock *bbAfterSwitch); /** Indicates the end of code generation for a "switch" statement. */ void EndSwitch(); /** Emits code for a "switch" statement in the program. @param expr Gives the value of the expression after the "switch" @param defaultBlock Basic block to execute for the "default" case. This should be NULL if there is no "default" label inside the switch. @param caseBlocks vector that stores the mapping from label values after "case" statements to basic blocks corresponding to the "case" labels. @param nextBlocks For each basic block for a "case" or "default" label, this gives the basic block for the immediately-following "case" or "default" label (or the basic block after the "switch" statement for the last label.) */ void SwitchInst(llvm::Value *expr, llvm::BasicBlock *defaultBlock, const std::vector > &caseBlocks, const std::map &nextBlocks); /** Generates code for a "default" label after a "switch" statement. The checkMask parameter indicates whether additional code should be generated to check to see if the execution mask is all off after the default label (in which case a jump to the following label will be issued. */ void EmitDefaultLabel(bool checkMask, SourcePos pos); /** Generates code for a "case" label after a "switch" statement. See the documentation for EmitDefaultLabel() for discussion of the checkMask parameter. */ void EmitCaseLabel(int value, bool checkMask, SourcePos pos); /** Returns the current number of nested levels of 'varying' control flow */ int VaryingCFDepth() const; bool InForeachLoop() const; /** Temporarily disables emission of performance warnings from gathers and scatters from subsequent code. */ void DisableGatherScatterWarnings(); /** Reenables emission of gather/scatter performance warnings. */ void EnableGatherScatterWarnings(); void SetContinueTarget(llvm::BasicBlock *bb) { continueTarget = bb; } /** Step through the code and find label statements; create a basic block for each one, so that subsequent calls to GetLabeledBasicBlock() return the corresponding basic block. */ void InitializeLabelMap(Stmt *code); /** If there is a label in the function with the given name, return the new basic block that it starts. */ llvm::BasicBlock *GetLabeledBasicBlock(const std::string &label); /** Returns a vector of all labels in the context. This is simply the key set of the labelMap */ std::vector GetLabels(); /** Called to generate code for 'return' statement; value is the expression in the return statement (if non-NULL), and doCoherenceCheck indicates whether instructions should be generated to see if all of the currently-running lanes have returned (if we're under varying control flow). */ void CurrentLanesReturned(Expr *value, bool doCoherenceCheck); /** @} */ /** @name Small helper/utility routines @{ */ /** Given a boolean mask value of type LLVMTypes::MaskType, return an i1 value that indicates if any of the mask lanes are on. */ llvm::Value *Any(llvm::Value *mask); /** Given a boolean mask value of type LLVMTypes::MaskType, return an i1 value that indicates if all of the mask lanes are on. */ llvm::Value *All(llvm::Value *mask); /** Given a boolean mask value of type LLVMTypes::MaskType, return an i1 value that indicates if all of the mask lanes are off. */ llvm::Value *None(llvm::Value *mask); /** Given a boolean mask value of type LLVMTypes::MaskType, return an i64 value wherein the i'th bit is on if and only if the i'th lane of the mask is on. */ llvm::Value *LaneMask(llvm::Value *mask); /** Given two masks of type LLVMTypes::MaskType, return an i1 value that indicates whether the two masks are equal. */ llvm::Value *MasksAllEqual(llvm::Value *mask1, llvm::Value *mask2); /** generate constantvector, which contains programindex, i.e. < i32 0, i32 1, i32 2, i32 3> */ llvm::Value *ProgramIndexVector(bool is32bits = true); #ifdef ISPC_NVPTX_ENABLED llvm::Value *ProgramIndexVectorPTX(bool is32bits = true); /** Issues a call to __insert_int8/int16/int32/int64/float/double */ llvm::Value* Insert(llvm::Value *vector, llvm::Value *lane, llvm::Value *scalar); /** Issues a call to __extract_int8/int16/int32/int64/float/double */ llvm::Value* Extract(llvm::Value *vector, llvm::Value *lane); #endif /** Given a string, create an anonymous global variable to hold its value and return the pointer to the string. */ llvm::Value *GetStringPtr(const std::string &str); /** Create a new basic block with given name */ llvm::BasicBlock *CreateBasicBlock(const char *name); /** Given a vector with element type i1, return a vector of type LLVMTypes::BoolVectorType. This method handles the conversion for the targets where the bool vector element type is, for example, i32. */ llvm::Value *I1VecToBoolVec(llvm::Value *b); /** If the user has asked to compile the program with instrumentation, this inserts a callback to the user-supplied instrumentation function at the current point in the code. */ void AddInstrumentationPoint(const char *note); /** @} */ /** @name Debugging support @{ */ /** Set the current source file position; subsequent emitted instructions will have this position associated with them if debugging information is being generated. */ void SetDebugPos(SourcePos pos); SourcePos GetDebugPos() const; /** Adds debugging metadata to the given instruction. If pos == NULL, use FunctionEmitContext::currentPos as the source file position for the instruction. Similarly, if a DIScope is provided, it's used and otherwise the scope is found from a GetDIScope() call. This takes a llvm::Value for the instruction rather than an llvm::Instruction for convenience; in calling code we often have Instructions stored using Value pointers; the code here returns silently if it's not actually given an instruction. */ void AddDebugPos(llvm::Value *instruction, const SourcePos *pos = NULL, #if ISPC_LLVM_VERSION <= ISPC_LLVM_3_6 llvm::DIScope *scope = NULL); #else /* LLVM 3.7+ */ llvm::DIScope *scope = NULL); //llvm::MDScope *scope = NULL ); #endif /** Inform the debugging information generation code that a new scope is starting in the source program. */ void StartScope(); /** Inform the debugging information generation code that the current scope is ending in the source program. */ void EndScope(); /** Returns the llvm::DIScope corresponding to the current program scope. */ #if ISPC_LLVM_VERSION <= ISPC_LLVM_3_6 llvm::DIScope GetDIScope() const; #else // LLVM 3.7++ llvm::DIScope *GetDIScope() const; #endif /** Emits debugging information for the variable represented by sym. */ void EmitVariableDebugInfo(Symbol *sym); /** Emits debugging information for the function parameter represented by sym. */ void EmitFunctionParameterDebugInfo(Symbol *sym, int parameterNum); /** @} */ /** @name IR instruction emission @brief These methods generally closely correspond to LLVM IR instructions. See the LLVM assembly language reference manual (http://llvm.org/docs/LangRef.html) and the LLVM doxygen documentaion (http://llvm.org/doxygen) for more information. Here we will only document significant generalizations to the functionality of the corresponding basic LLVM instructions. Beyond actually emitting the instruction, the implementations of these methods in FunctionEmitContext also handle adding debugging metadata if debugging symbols are enabled, adding the instructions to the current basic block, and handling generalizations like 'varying' lvalues, arithmetic operations with VectorType operands, etc. @{ */ /** Emit the binary operator given by the inst parameter. If llvm::Values corresponding to VectorTypes are given as operands, this also handles applying the given operation to the vector elements. */ llvm::Value *BinaryOperator(llvm::Instruction::BinaryOps inst, llvm::Value *v0, llvm::Value *v1, const char *name = NULL); /** Emit the "not" operator. Like BinaryOperator(), this also handles a VectorType-based operand. */ llvm::Value *NotOperator(llvm::Value *v, const char *name = NULL); /** Emit a comparison instruction. If the operands are VectorTypes, then a value for the corresponding boolean VectorType is returned. */ llvm::Value *CmpInst(llvm::Instruction::OtherOps inst, llvm::CmpInst::Predicate pred, llvm::Value *v0, llvm::Value *v1, const char *name = NULL); /** Given a scalar value, return a vector of the same type (or an array, for pointer types). */ llvm::Value *SmearUniform(llvm::Value *value, const char *name = NULL); llvm::Value *BitCastInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Value *PtrToIntInst(llvm::Value *value, const char *name = NULL); llvm::Value *PtrToIntInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Value *IntToPtrInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Instruction *TruncInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Instruction *CastInst(llvm::Instruction::CastOps op, llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Instruction *FPCastInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Instruction *SExtInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); llvm::Instruction *ZExtInst(llvm::Value *value, llvm::Type *type, const char *name = NULL); /** Given two integer-typed values (but possibly one vector and the other not, and or of possibly-different bit-widths), update their values as needed so that the two have the same (more general) type. */ void MatchIntegerTypes(llvm::Value **v0, llvm::Value **v1); /** Create a new slice pointer out of the given pointer to an soa type and an integer offset to a slice within that type. */ llvm::Value *MakeSlicePointer(llvm::Value *ptr, llvm::Value *offset); /** These GEP methods are generalizations of the standard ones in LLVM; they support both uniform and varying basePtr values as well as uniform and varying index values (arrays of indices). Varying base pointers are expected to come in as vectors of i32/i64 (depending on the target), since LLVM doesn't currently support vectors of pointers. The underlying type of the base pointer must be provided via the ptrType parameter */ llvm::Value *GetElementPtrInst(llvm::Value *basePtr, llvm::Value *index, const Type *ptrType, const char *name = NULL); llvm::Value *GetElementPtrInst(llvm::Value *basePtr, llvm::Value *index0, llvm::Value *index1, const Type *ptrType, const char *name = NULL); /** This method returns a new pointer that represents offsetting the given base pointer to point at the given element number of the structure type that the base pointer points to. (The provided pointer must be a pointer to a structure type. The ptrType gives the type of the pointer, though it may be NULL if the base pointer is uniform. */ llvm::Value *AddElementOffset(llvm::Value *basePtr, int elementNum, const Type *ptrType, const char *name = NULL, const PointerType **resultPtrType = NULL); /** Load from the memory location(s) given by lvalue, using the given mask. The lvalue may be varying, in which case this corresponds to a gather from the multiple memory locations given by the array of pointer values given by the lvalue. If the lvalue is not varying, then both the mask pointer and the type pointer may be NULL. */ llvm::Value *LoadInst(llvm::Value *ptr, llvm::Value *mask, const Type *ptrType, const char *name = NULL, bool one_elem = false); llvm::Value *LoadInst(llvm::Value *ptr, const char *name = NULL); /** Emits an alloca instruction to allocate stack storage for the given type. If a non-zero alignment is specified, the object is also allocated at the given alignment. By default, the alloca instruction is added at the start of the function in the entry basic block; if it should be added to the current basic block, then the atEntryBlock parameter should be false. */ llvm::Value *AllocaInst(llvm::Type *llvmType, const char *name = NULL, int align = 0, bool atEntryBlock = true); /** Standard store instruction; for this variant, the lvalue must be a single pointer, not a varying lvalue. */ void StoreInst(llvm::Value *value, llvm::Value *ptr); /** In this variant of StoreInst(), the lvalue may be varying. If so, this corresponds to a scatter. Whether the lvalue is uniform of varying, the given storeMask is used to mask the stores so that they only execute for the active program instances. */ void StoreInst(llvm::Value *value, llvm::Value *ptr, llvm::Value *storeMask, const Type *valueType, const Type *ptrType); /** Copy count bytes of memory from the location pointed to by src to the location pointed to by dest. (src and dest must not be overlapping.) */ void MemcpyInst(llvm::Value *dest, llvm::Value *src, llvm::Value *count, llvm::Value *align = NULL); void BranchInst(llvm::BasicBlock *block); void BranchInst(llvm::BasicBlock *trueBlock, llvm::BasicBlock *falseBlock, llvm::Value *test); /** This convenience method maps to an llvm::ExtractElementInst if the given value is a llvm::VectorType, and to an llvm::ExtractValueInst otherwise. */ llvm::Value *ExtractInst(llvm::Value *v, int elt, const char *name = NULL); /** This convenience method maps to an llvm::InsertElementInst if the given value is a llvm::VectorType, and to an llvm::InsertValueInst otherwise. */ llvm::Value *InsertInst(llvm::Value *v, llvm::Value *eltVal, int elt, const char *name = NULL); /** This convenience method maps to an llvm::ShuffleVectorInst. */ llvm::Value *ShuffleInst(llvm::Value *v1, llvm::Value *v2, llvm::Value *mask, const char *name = NULL); /** This convenience method to generate broadcast pattern. It takes a value and a vector type. Type of the value must match element type of the vector. */ llvm::Value *BroadcastValue(llvm::Value *v, llvm::Type *vecType, const char *name = NULL); llvm::PHINode *PhiNode(llvm::Type *type, int count, const char *name = NULL); llvm::Instruction *SelectInst(llvm::Value *test, llvm::Value *val0, llvm::Value *val1, const char *name = NULL); /** Emits IR to do a function call with the given arguments. If the function type is a varying function pointer type, its full type must be provided in funcType. funcType can be NULL if func is a uniform function pointer. */ llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType, const std::vector &args, const char *name = NULL); /** This is a convenience method that issues a call instruction to a function that takes just a single argument. */ llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType, llvm::Value *arg, const char *name = NULL); /** This is a convenience method that issues a call instruction to a function that takes two arguments. */ llvm::Value *CallInst(llvm::Value *func, const FunctionType *funcType, llvm::Value *arg0, llvm::Value *arg1, const char *name = NULL); /** Launch an asynchronous task to run the given function, passing it he given argument values. */ llvm::Value *LaunchInst(llvm::Value *callee, std::vector &argVals, llvm::Value *launchCount[3]); void SyncInst(); llvm::Instruction *ReturnInst(); /** @} */ private: /** Pointer to the Function for which we're currently generating code. */ Function *function; /** LLVM function representation for the current function. */ llvm::Function *llvmFunction; /** The basic block into which we add any alloca instructions that need to go at the very start of the function. */ llvm::BasicBlock *allocaBlock; /** The current basic block into which we're emitting new instructions */ llvm::BasicBlock *bblock; /** Pointer to stack-allocated memory that stores the current value of the full program mask. */ llvm::Value *fullMaskPointer; /** Pointer to stack-allocated memory that stores the current value of the program mask representing varying control flow within the function. */ llvm::Value *internalMaskPointer; /** Value of the program mask when the function starts execution. */ llvm::Value *functionMaskValue; /** Current source file position; if debugging information is being generated, this position is used to set file/line information for instructions. */ SourcePos currentPos; /** Source file position where the function definition started. Used for error messages and debugging symbols. */ SourcePos funcStartPos; /** If currently in a loop body or switch statement, the value of the mask at the start of it. */ llvm::Value *blockEntryMask; /** If currently in a loop body or switch statement, this is a pointer to memory to store a mask value that represents which of the lanes have executed a 'break' statement. If we're not in a loop body or switch, this should be NULL. */ llvm::Value *breakLanesPtr; /** Similar to breakLanesPtr, if we're inside a loop, this is a pointer to memory to record which of the program instances have executed a 'continue' statement. */ llvm::Value *continueLanesPtr; /** If we're inside a loop or switch statement, this gives the basic block immediately after the current loop or switch, which we will jump to if all of the lanes have executed a break statement or are otherwise done with it. */ llvm::BasicBlock *breakTarget; /** If we're inside a loop, this gives the block to jump to if all of the running lanes have executed a 'continue' statement. */ llvm::BasicBlock *continueTarget; /** @name Switch statement state These variables store various state that's active when we're generating code for a switch statement. They should all be NULL outside of a switch. @{ */ /** The value of the expression used to determine which case in the statements after the switch to execute. */ llvm::Value *switchExpr; /** Map from case label numbers to the basic block that will hold code for that case. */ const std::vector > *caseBlocks; /** The basic block of code to run for the "default" label in the switch statement. */ llvm::BasicBlock *defaultBlock; /** For each basic block for the code for cases (and the default label, if present), this map gives the basic block for the immediately following case/default label. */ const std::map *nextBlocks; /** Records whether the switch condition was uniform; this is a distinct notion from whether the switch represents uniform or varying control flow; we may have varying control flow from a uniform switch condition if there is a 'break' inside the switch that's under varying control flow. */ bool switchConditionWasUniform; /** @} */ /** A pointer to memory that records which of the program instances have executed a 'return' statement (and are thus really truly done running any more instructions in this functions. */ llvm::Value *returnedLanesPtr; /** A pointer to memory to store the return value for the function. Since difference program instances may execute 'return' statements at different times, we need to accumulate the return values as they come in until we return for real. */ llvm::Value *returnValuePtr; /** The CFInfo structure records information about a nesting level of control flow. This vector lets us see what control flow is going around outside the current position in the function being emitted. */ std::vector controlFlowInfo; #if ISPC_LLVM_VERSION <= ISPC_LLVM_3_6 /** DIFile object corresponding to the source file where the current function was defined (used for debugging info). */ llvm::DIFile diFile; /** DISubprogram corresponding to this function (used for debugging info). */ llvm::DISubprogram diSubprogram; /** These correspond to the current set of nested scopes in the function. */ std::vector debugScopes; #else // LLVM 3.7++ /** DIFile object corresponding to the source file where the current function was defined (used for debugging info). */ llvm::DIFile *diFile; /** DISubprogram corresponding to this function (used for debugging info). */ llvm::DISubprogram *diSubprogram; /** These correspond to the current set of nested scopes in the function. */ std::vector debugScopes; #endif /** True if a 'launch' statement has been encountered in the function. */ bool launchedTasks; /** This is a pointer to a void * that is passed to the ISPCLaunch(), ISPCAlloc(), and ISPCSync() routines as a handle to the group ot tasks launched from the current function. */ llvm::Value *launchGroupHandlePtr; /** Nesting count of the number of times calling code has disabled (and not yet reenabled) gather/scatter performance warnings. */ int disableGSWarningCount; std::map labelMap; static bool initLabelBBlocks(ASTNode *node, void *data); llvm::Value *pointerVectorToVoidPointers(llvm::Value *value); static void addGSMetadata(llvm::Value *inst, SourcePos pos); bool ifsInCFAllUniform(int cfType) const; void jumpIfAllLoopLanesAreDone(llvm::BasicBlock *target); llvm::Value *emitGatherCallback(llvm::Value *lvalue, llvm::Value *retPtr); llvm::Value *applyVaryingGEP(llvm::Value *basePtr, llvm::Value *index, const Type *ptrType); void restoreMaskGivenReturns(llvm::Value *oldMask); void addSwitchMaskCheck(llvm::Value *mask); bool inSwitchStatement() const; llvm::Value *getMaskAtSwitchEntry(); CFInfo *popCFState(); void scatter(llvm::Value *value, llvm::Value *ptr, const Type *valueType, const Type *ptrType, llvm::Value *mask); void maskedStore(llvm::Value *value, llvm::Value *ptr, const Type *ptrType, llvm::Value *mask); void storeUniformToSOA(llvm::Value *value, llvm::Value *ptr, llvm::Value *mask, const Type *valueType, const PointerType *ptrType); llvm::Value *loadUniformFromSOA(llvm::Value *ptr, llvm::Value *mask, const PointerType *ptrType, const char *name); llvm::Value *gather(llvm::Value *ptr, const PointerType *ptrType, llvm::Value *mask, const char *name); llvm::Value *addVaryingOffsetsIfNeeded(llvm::Value *ptr, const Type *ptrType); }; #endif // ISPC_CTX_H