;; Copyright (c) 2010-2015, Intel Corporation ;; All rights reserved. ;; ;; Redistribution and use in source and binary forms, with or without ;; modification, are permitted provided that the following conditions are ;; met: ;; ;; * Redistributions of source code must retain the above copyright ;; notice, this list of conditions and the following disclaimer. ;; ;; * Redistributions in binary form must reproduce the above copyright ;; notice, this list of conditions and the following disclaimer in the ;; documentation and/or other materials provided with the distribution. ;; ;; * Neither the name of Intel Corporation nor the names of its ;; contributors may be used to endorse or promote products derived from ;; this software without specific prior written permission. ;; ;; ;; THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS ;; IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ;; TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A ;; PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER ;; OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, ;; EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, ;; PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR ;; PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ;; LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING ;; NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS ;; SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; SSE4 target implementation. ctlztz() define_prefetches() define_shuffles() aossoa() rdrand_decls() ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding floats declare <4 x float> @llvm.x86.sse41.round.ss(<4 x float>, <4 x float>, i32) nounwind readnone define float @__round_uniform_float(float) nounwind readonly alwaysinline { ; roundss, round mode nearest 0b00 | don't signal precision exceptions 0b1000 = 8 ; the roundss intrinsic is a total mess--docs say: ; ; __m128 _mm_round_ss (__m128 a, __m128 b, const int c) ; ; b is a 128-bit parameter. The lowest 32 bits are the result of the rounding function ; on b0. The higher order 96 bits are copied directly from input parameter a. The ; return value is described by the following equations: ; ; r0 = RND(b0) ; r1 = a1 ; r2 = a2 ; r3 = a3 ; ; It doesn't matter what we pass as a, since we only need the r0 value ; here. So we pass the same register for both. Further, only the 0th ; element of the b parameter matters %xi = insertelement <4 x float> undef, float %0, i32 0 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 8) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define float @__floor_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round down 0b01 | don't signal precision exceptions 0b1001 = 9 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 9) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } define float @__ceil_uniform_float(float) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <4 x float> undef, float %0, i32 0 ; roundps, round up 0b10 | don't signal precision exceptions 0b1010 = 10 %xr = call <4 x float> @llvm.x86.sse41.round.ss(<4 x float> %xi, <4 x float> %xi, i32 10) %rs = extractelement <4 x float> %xr, i32 0 ret float %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rounding doubles declare <2 x double> @llvm.x86.sse41.round.sd(<2 x double>, <2 x double>, i32) nounwind readnone define double @__round_uniform_double(double) nounwind readonly alwaysinline { %xi = insertelement <2 x double> undef, double %0, i32 0 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 8) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define double @__floor_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundsd, round down 0b01 | don't signal precision exceptions 0b1001 = 9 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 9) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } define double @__ceil_uniform_double(double) nounwind readonly alwaysinline { ; see above for round_ss instrinsic discussion... %xi = insertelement <2 x double> undef, double %0, i32 0 ; roundsd, round up 0b10 | don't signal precision exceptions 0b1010 = 10 %xr = call <2 x double> @llvm.x86.sse41.round.sd(<2 x double> %xi, <2 x double> %xi, i32 10) %rs = extractelement <2 x double> %xr, i32 0 ret double %rs } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rcp declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone define float @__rcp_uniform_float(float) nounwind readonly alwaysinline { ; do the rcpss call ; uniform float iv = extract(__rcp_u(v), 0); ; return iv * (2. - v * iv); %vecval = insertelement <4 x float> undef, float %0, i32 0 %call = call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %vecval) %scall = extractelement <4 x float> %call, i32 0 ; do one N-R iteration to improve precision, as above %v_iv = fmul float %0, %scall %two_minus = fsub float 2., %v_iv %iv_mul = fmul float %scall, %two_minus ret float %iv_mul } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; rsqrt declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone define float @__rsqrt_uniform_float(float) nounwind readonly alwaysinline { ; uniform float is = extract(__rsqrt_u(v), 0); %v = insertelement <4 x float> undef, float %0, i32 0 %vis = call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %v) %is = extractelement <4 x float> %vis, i32 0 ; Newton-Raphson iteration to improve precision ; return 0.5 * is * (3. - (v * is) * is); %v_is = fmul float %0, %is %v_is_is = fmul float %v_is, %is %three_sub = fsub float 3., %v_is_is %is_mul = fmul float %is, %three_sub %half_scale = fmul float 0.5, %is_mul ret float %half_scale } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; sqrt declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone define float @__sqrt_uniform_float(float) nounwind readonly alwaysinline { sse_unary_scalar(ret, 4, float, @llvm.x86.sse.sqrt.ss, %0) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision sqrt declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone define double @__sqrt_uniform_double(double) nounwind alwaysinline { sse_unary_scalar(ret, 2, double, @llvm.x86.sse2.sqrt.sd, %0) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; fast math mode declare void @llvm.x86.sse.stmxcsr(i8 *) nounwind declare void @llvm.x86.sse.ldmxcsr(i8 *) nounwind define void @__fastmath() nounwind alwaysinline { %ptr = alloca i32 %ptr8 = bitcast i32 * %ptr to i8 * call void @llvm.x86.sse.stmxcsr(i8 * %ptr8) %oldval = load PTR_OP_ARGS(`i32 ') %ptr ; turn on DAZ (64)/FTZ (32768) -> 32832 %update = or i32 %oldval, 32832 store i32 %update, i32 *%ptr call void @llvm.x86.sse.ldmxcsr(i8 * %ptr8) ret void } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; float min/max declare <4 x float> @llvm.x86.sse.max.ss(<4 x float>, <4 x float>) nounwind readnone declare <4 x float> @llvm.x86.sse.min.ss(<4 x float>, <4 x float>) nounwind readnone define float @__max_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.max.ss, %0, %1) ret float %ret } define float @__min_uniform_float(float, float) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, float, @llvm.x86.sse.min.ss, %0, %1) ret float %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; double precision min/max declare <2 x double> @llvm.x86.sse2.max.sd(<2 x double>, <2 x double>) nounwind readnone declare <2 x double> @llvm.x86.sse2.min.sd(<2 x double>, <2 x double>) nounwind readnone define double @__min_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.min.sd, %0, %1) ret double %ret } define double @__max_uniform_double(double, double) nounwind readnone alwaysinline { sse_binary_scalar(ret, 2, double, @llvm.x86.sse2.max.sd, %0, %1) ret double %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; int min/max declare <4 x i32> @llvm.x86.sse41.pminsd(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxsd(<4 x i32>, <4 x i32>) nounwind readnone define i32 @__min_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminsd, %0, %1) ret i32 %ret } define i32 @__max_uniform_int32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxsd, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; unsigned int min/max declare <4 x i32> @llvm.x86.sse41.pminud(<4 x i32>, <4 x i32>) nounwind readnone declare <4 x i32> @llvm.x86.sse41.pmaxud(<4 x i32>, <4 x i32>) nounwind readnone define i32 @__min_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pminud, %0, %1) ret i32 %ret } define i32 @__max_uniform_uint32(i32, i32) nounwind readonly alwaysinline { sse_binary_scalar(ret, 4, i32, @llvm.x86.sse41.pmaxud, %0, %1) ret i32 %ret } ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; horizontal ops / reductions declare i32 @llvm.ctpop.i32(i32) nounwind readnone define i32 @__popcnt_int32(i32) nounwind readonly alwaysinline { %call = call i32 @llvm.ctpop.i32(i32 %0) ret i32 %call } declare i64 @llvm.ctpop.i64(i64) nounwind readnone define i64 @__popcnt_int64(i64) nounwind readonly alwaysinline { %call = call i64 @llvm.ctpop.i64(i64 %0) ret i64 %call } declare_nvptx()