/* Copyright (c) 2010-2014, Intel Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of Intel Corporation nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #if 1 typedef int bool_t; #else typedef bool bool_t; #endif typedef float<3> float3; #ifdef __NVPTX__ #define uniform_t varying #else #define uniform_t uniform #endif struct int3 { int x,y,z; }; struct Ray { float3 origin, dir, invDir; uniform unsigned int dirIsNeg[3]; float mint, maxt; int hitId; }; struct Triangle { float p[3][4]; int id; int pad[3]; }; struct LinearBVHNode { float bounds[2][3]; unsigned int offset; // num primitives for leaf, second child for interior unsigned int8 nPrimitives; unsigned int8 splitAxis; unsigned int16 pad; }; static inline float3 Cross(const float3 v1, const float3 v2) { float v1x = v1.x, v1y = v1.y, v1z = v1.z; float v2x = v2.x, v2y = v2.y, v2z = v2.z; float3 ret; ret.x = (v1y * v2z) - (v1z * v2y); ret.y = (v1z * v2x) - (v1x * v2z); ret.z = (v1x * v2y) - (v1y * v2x); return ret; } static inline float Dot(const float3 a, const float3 b) { return a.x * b.x + a.y * b.y + a.z * b.z; } #if 1 inline #endif static void generateRay(uniform const float raster2camera[4][4], uniform const float camera2world[4][4], float x, float y, Ray &ray) { ray.mint = 0.f; ray.maxt = 1e30f; ray.hitId = 0; // transform raster coordinate (x, y, 0) to camera space float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3]; float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3]; float camz = raster2camera[2][3]; float camw = raster2camera[3][3]; camx /= camw; camy /= camw; camz /= camw; ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy + camera2world[0][2] * camz; ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy + camera2world[1][2] * camz; ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy + camera2world[2][2] * camz; ray.origin.x = camera2world[0][3] / camera2world[3][3]; ray.origin.y = camera2world[1][3] / camera2world[3][3]; ray.origin.z = camera2world[2][3] / camera2world[3][3]; ray.invDir = 1.f / ray.dir; ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0; ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0; ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0; } #if 1 inline #endif static bool_t BBoxIntersect(const uniform float bounds[2][3], const Ray &ray) { const uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] }; const uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] }; float t0 = ray.mint, t1 = ray.maxt; // Check all three axis-aligned slabs. Don't try to early out; it's // not worth the trouble float3 tNear = (bounds0 - ray.origin) * ray.invDir; float3 tFar = (bounds1 - ray.origin) * ray.invDir; if (tNear.x > tFar.x) { float tmp = tNear.x; tNear.x = tFar.x; tFar.x = tmp; } t0 = max(tNear.x, t0); t1 = min(tFar.x, t1); if (tNear.y > tFar.y) { float tmp = tNear.y; tNear.y = tFar.y; tFar.y = tmp; } t0 = max(tNear.y, t0); t1 = min(tFar.y, t1); if (tNear.z > tFar.z) { float tmp = tNear.z; tNear.z = tFar.z; tFar.z = tmp; } t0 = max(tNear.z, t0); t1 = min(tFar.z, t1); return (t0 <= t1); } #if 1 inline #endif static bool_t TriIntersect(const uniform_t Triangle tri, Ray &ray) { const uniform_t float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] }; const uniform_t float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] }; const uniform_t float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] }; const uniform_t float3 e1 = p1 - p0; const uniform_t float3 e2 = p2 - p0; float3 s1 = Cross(ray.dir, e2); float divisor = Dot(s1, e1); bool_t hit = true; if (divisor == 0.) hit = false; float invDivisor = 1.f / divisor; // Compute first barycentric coordinate float3 d = ray.origin - p0; float b1 = Dot(d, s1) * invDivisor; if (b1 < 0. || b1 > 1.) hit = false; // Compute second barycentric coordinate float3 s2 = Cross(d, e1); float b2 = Dot(ray.dir, s2) * invDivisor; if (b2 < 0. || b1 + b2 > 1.) hit = false; // Compute _t_ to intersection point float t = Dot(e2, s2) * invDivisor; if (t < ray.mint || t > ray.maxt) hit = false; if (hit) { ray.maxt = t; ray.hitId = tri.id; } return hit; } #if 1 inline #endif bool_t BVHIntersect(const uniform LinearBVHNode nodes[], const uniform Triangle tris[], Ray &r) { Ray ray = r; bool_t hit = false; // Follow ray through BVH nodes to find primitive intersections uniform int todoOffset = 0, nodeNum = 0; uniform int todo[64]; while (true) { // Check ray against BVH node const uniform LinearBVHNode node = nodes[nodeNum]; if (any(BBoxIntersect(node.bounds, ray))) { const uniform unsigned int nPrimitives = node.nPrimitives; if (nPrimitives > 0) { // Intersect ray with primitives in leaf BVH node const uniform unsigned int primitivesOffset = node.offset; for (uniform_t unsigned int i = 0; i < nPrimitives; ++i) { if (TriIntersect(tris[primitivesOffset+i], ray)) hit = true; } if (todoOffset == 0) break; nodeNum = todo[--todoOffset]; } else { // Put far BVH node on _todo_ stack, advance to near node #if 0 /* fails */ int dirIsNeg = r.dirIsNeg[node.splitAxis]; #else int dirIsNeg; if (node.splitAxis == 0) dirIsNeg = r.dirIsNeg[0]; if (node.splitAxis == 1) dirIsNeg = r.dirIsNeg[1]; if (node.splitAxis == 2) dirIsNeg = r.dirIsNeg[2]; #endif if (dirIsNeg) { todo[todoOffset++] = nodeNum + 1; nodeNum = node.offset; } else { todo[todoOffset++] = node.offset; nodeNum = nodeNum + 1; } } } else { if (todoOffset == 0) break; nodeNum = todo[--todoOffset]; } } r.maxt = ray.maxt; r.hitId = ray.hitId; return hit; } #if 1 inline #endif static void raytrace_tile(uniform int x0, uniform int x1, uniform int y0, uniform int y1, uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const uniform LinearBVHNode nodes[], const uniform Triangle triangles[]) { const uniform float widthScale = (float)(baseWidth) / (float)(width); const uniform float heightScale = (float)(baseHeight) / (float)(height); foreach_tiled (y = y0 ... y1, x = x0 ... x1) { Ray ray; generateRay(raster2camera, camera2world, x*widthScale, y*heightScale, ray); BVHIntersect(nodes, triangles, ray); int offset = y * width + x; image[offset] = ray.maxt; id[offset] = ray.hitId; } } export void raytrace_ispc(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const uniform LinearBVHNode nodes[], const uniform Triangle triangles[]) { raytrace_tile(0, width, 0, height, width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles); } task void raytrace_tile_task(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const uniform LinearBVHNode nodes[], const uniform Triangle triangles[]) { const uniform int dx = 64, dy = 8; // must match dx, dy below const uniform int xBuckets = (width + (dx-1)) / dx; const uniform int x0 = (taskIndex % xBuckets) * dx; const uniform int x1 = min(x0 + dx, width); const uniform int y0 = (taskIndex / xBuckets) * dy; const uniform int y1 = min(y0 + dy, height); raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles); } export void raytrace_ispc_tasks(uniform int width, uniform int height, uniform int baseWidth, uniform int baseHeight, const uniform float raster2camera[4][4], const uniform float camera2world[4][4], uniform float image[], uniform int id[], const uniform LinearBVHNode nodes[], const uniform Triangle triangles[]) { const uniform int dx = 64, dy = 8; const uniform int xBuckets = (width + (dx-1)) / dx; const uniform int yBuckets = (height + (dy-1)) / dy; const uniform int nTasks = xBuckets * yBuckets; launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight, raster2camera, camera2world, image, id, nodes, triangles); }