This way, we match C/C++ in that casting a bool to an int gives either the value
zero or the value one. There is a new stdlib function int sign_extend(bool)
that does sign extension for cases where that's desired.
Add much more suppport for doubles and in64 types in the standard library, basically supporting everything for them that are supported for floats and int32s. (The notable exceptions being the approximate rcp() and rsqrt() functions, which don't really have sensible analogs for doubles (or at least not built-in instructions).)
This checkin provides the standard set of atomic operations and a memory barrier in the ispc standard library. Both signed and unsigned 32- and 64-bit integer types are supported.
When creating function Symbols for functions that were defined in LLVM bitcode for the standard library, if any of the function parameters are integer types, create two ispc-side Symbols: one where the integer types are all signed and the other where they are all unsigned. This allows us to provide, for example, both store_to_int16(reference int a[], uniform int offset, int val) as well as store_to_int16(reference unsigned int a[], uniform int offset, unsigned int val). functions.
Added some additional tests to exercise the new variants of these.
Also fixed some cases where the __{load,store}_int{8,16} builtins would read from/write to memory even if the mask was all off (which could cause crashes in some cases.)