It can sometimes be useful to know the general place we were in the program
when an assertion hit; when the position is available / applicable, this
macro is now used.
Issue #268.
We now have a set of template functions CastType<AtomicType>, etc., that in
turn use a new typeId field in each Type instance, allowing them to be inlined
and to be quite efficient.
This improves front-end performance for a particular large program by 28%.
Before, if the function was declared before being defined, then the symbol's
SourcePos would be left set to the position of the declaration. This ended
up getting the debugging symbols mixed up in this case, which was undesirable.
Now a declaration like 'struct Foo;' can be used to establish the
name of a struct type, without providing a definition. One can
pass pointers to such types around the system, but can't do much
else with them (as in C/C++).
Issue #125.
The decl.* code now no longer interacts with Symbols, but just returns
names, types, initializer expressions, etc., as needed. This makes the
code a bit more understandable.
Fixes issues #171 and #130.
We now have separate Expr implementations for dereferencing pointers
and automatically dereferencing references. This is in particular
necessary so that we can detect attempts to dereference references
with the '*' operator in programs and issue an error in that case.
Fixes issue #192.
For now this has the __ prefix, as an experimental feature currently only
used in the standard library implementation. It's probably worth making
something along these lines an official feature, but I'm not sure if this
in its current form is quite the right thing.
There's now a SOA variability class (in addition to uniform,
varying, and unbound variability); the SOA factor must be a
positive power of 2.
When applied to a type, the leaf elements of the type (i.e.
atomic types, pointer types, and enum types) are widened out
into arrays of the given SOA factor. For example, given
struct Point { float x, y, z; };
Then "soa<8> Point" has a memory layout of "float x[8], y[8],
z[8]".
Furthermore, array indexing syntax has been augmented so that
when indexing into arrays of SOA-variability data, the two-stage
indexing (first into the array of soa<> elements and then into
the leaf arrays of SOA data) is performed automatically.
Previously, we uniqued AtomicTypes, so that they could be compared
by pointer equality, but with forthcoming SOA variability changes,
this would become too unwieldy (lacking a more general / ubiquitous
type uniquing implementation.)
Add a number of additional error cases in the grammar.
Enable bison's extended error reporting, to get better messages about the
context of errors and the expected (but not found) tokens at errors.
Improve the printing of these by providing an implementation of yytnamerr
that rewrites things like "TOKEN_MUL_ASSIGN" to "*=" in error messages.
Print the source location (using Error() when yyerror() is called; wiring
this up seems to require no longer building a 'pure parser' but having
yylloc as a global, which in turn led to having to update all of the uses of
it (which previously accessed it as a pointer).
Updated a number of tests_errors for resulting changesin error text.
Switches with both uniform and varying "switch" expressions are
supported. Switch statements with varying expressions and very
large numbers of labels may not perform well; some issues to be
filed shortly will track opportunities for improving these.
As part of this, function declarations are no longer scoped (this is permitted
by the C standard, as it turns out.) So code like:
void foo() { void bar(); }
void bat() { bar(); }
Compiles correctly; the declaration of bar() in foo() is still available in the
definition of bar().
Fixes issue #129.
Now, when a type is declared without an explicit "uniform" or "varying"
qualifier, its variability is unbound; depending on the context of the
declaration, the variability is later finalized.
Currently, in almost all cases, types with unbound variability are
resolved to varying types; the one exception is typecasts like:
"(int)1"; in this case, the fact that (int) has unbound variability
carries through to the TypeCastExpr, which in turn notices that the
expression being type cast has uniform type and in turn will resolve
(int) to (uniform int).
Fixes issue #127.
ispc now supports goto, but only under uniform control flow--i.e.
it must be possible for the compiler to statically determine that
all program instances will follow the goto. An error is issued at
compile time if a goto is used when this is not the case.
When used, these targets end up with calls to undefined functions for all
of the various special vector stuff ispc needs to compile ispc programs
(masked store, gather, min/max, sqrt, etc.).
These targets are not yet useful for anything, but are a step toward
having an option to C++ code with calls out to intrinsics.
Reorganized the directory structure a bit and put the LLVM bitcode used
to define target-specific stuff (as well as some generic built-ins stuff)
into a builtins/ directory.
Note that for building on Windows, it's now necessary to set a LLVM_VERSION
environment variable (with values like LLVM_2_9, LLVM_3_0, LLVM_3_1svn, etc.)
Specifically, stmts and exprs are no longer responsible for first recursively
optimizing their children before doing their own optimization (this turned
out to be error-prone, with children sometimes being forgotten.) They now
are just responsible for their own optimization, when appropriate.
Accept 'u' and 'l' suffixes to force the constants to be corresponding types.
Just carry around a single 64-bit int value in yylval rather than having both
32- and 64-bit variants.
Previously, they all went into one big pile that was never cleaned up;
this was the wrong thing to do in a world where one might have a
function declaration inside another functions, say.
These make it easier to iterate over arbitrary amounts of data
elements; specifically, they automatically handle the "ragged
extra bits" that come up when the number of elements to be
processed isn't evenly divided by programCount.
TODO: documentation
Allow atomic types to be initialized with single-element expression lists:
int x = { 5 };
Issue an error if a storage class is provided with a function parameter.
Issue an error if two members of a struct have the same name.
Issue an error on trying to assign to a struct with a const member, even if
the struct itself isn't const.
Issue an error if a function is redefined.
Issue an error if a function overload is declared that differs only in return
type from a previously-declared function.
Issue an error if "inline" or "task" qualifiers are used outside of function
declarations.
Allow trailing ',' at the end of enumerator lists.
Multiple tests for all of the above.
Pointers can be either uniform or varying, and behave correspondingly.
e.g.: "uniform float * varying" is a varying pointer to uniform float
data in memory, and "float * uniform" is a uniform pointer to varying
data in memory. Like other types, pointers are varying by default.
Pointer-based expressions, & and *, sizeof, ->, pointer arithmetic,
and the array/pointer duality all bahave as in C. Array arguments
to functions are converted to pointers, also like C.
There is a built-in NULL for a null pointer value; conversion from
compile-time constant 0 values to NULL still needs to be implemented.
Other changes:
- Syntax for references has been updated to be C++ style; a useful
warning is now issued if the "reference" keyword is used.
- It is now illegal to pass a varying lvalue as a reference parameter
to a function; references are essentially uniform pointers.
This case had previously been handled via special case call by value
return code. That path has been removed, now that varying pointers
are available to handle this use case (and much more).
- Some stdlib routines have been updated to take pointers as
arguments where appropriate (e.g. prefetch and the atomics).
A number of others still need attention.
- All of the examples have been updated
- Many new tests
TODO: documentation