Added deferred shading workload
This commit is contained in:
717
examples/deferred/kernels.ispc
Normal file
717
examples/deferred/kernels.ispc
Normal file
@@ -0,0 +1,717 @@
|
||||
/*
|
||||
Copyright (c) 2010-2011, Intel Corporation
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Intel Corporation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "deferred.h"
|
||||
|
||||
struct InputDataArrays
|
||||
{
|
||||
uniform float zBuffer[];
|
||||
uniform unsigned int16 normalEncoded_x[]; // half float
|
||||
uniform unsigned int16 normalEncoded_y[]; // half float
|
||||
uniform unsigned int16 specularAmount[]; // half float
|
||||
uniform unsigned int16 specularPower[]; // half float
|
||||
uniform unsigned int8 albedo_x[]; // unorm8
|
||||
uniform unsigned int8 albedo_y[]; // unorm8
|
||||
uniform unsigned int8 albedo_z[]; // unorm8
|
||||
uniform float lightPositionView_x[];
|
||||
uniform float lightPositionView_y[];
|
||||
uniform float lightPositionView_z[];
|
||||
uniform float lightAttenuationBegin[];
|
||||
uniform float lightColor_x[];
|
||||
uniform float lightColor_y[];
|
||||
uniform float lightColor_z[];
|
||||
uniform float lightAttenuationEnd[];
|
||||
};
|
||||
|
||||
struct InputHeader
|
||||
{
|
||||
uniform float cameraProj[4][4];
|
||||
uniform float cameraNear;
|
||||
uniform float cameraFar;
|
||||
|
||||
uniform int32 framebufferWidth;
|
||||
uniform int32 framebufferHeight;
|
||||
uniform int32 numLights;
|
||||
uniform int32 inputDataChunkSize;
|
||||
uniform int32 inputDataArrayOffsets[idaNum];
|
||||
};
|
||||
|
||||
export void foo(reference InputHeader h) { }
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Common utility routines
|
||||
|
||||
static inline float
|
||||
dot3(float x, float y, float z, float a, float b, float c) {
|
||||
return (x*a + y*b + z*c);
|
||||
}
|
||||
|
||||
|
||||
static inline void
|
||||
normalize3(float x, float y, float z, reference float ox,
|
||||
reference float oy, reference float oz) {
|
||||
float n = rsqrt(x*x + y*y + z*z);
|
||||
ox = x * n;
|
||||
oy = y * n;
|
||||
oz = z * n;
|
||||
}
|
||||
|
||||
|
||||
static inline float
|
||||
Unorm8ToFloat32(unsigned int8 u) {
|
||||
return (float)u * (1.0f / 255.0f);
|
||||
}
|
||||
|
||||
|
||||
static inline unsigned int8
|
||||
Float32ToUnorm8(float f) {
|
||||
return (unsigned int8)(f * 255.0f);
|
||||
}
|
||||
|
||||
|
||||
// tile width must be a multiple of programCount (SIMD size)
|
||||
static void
|
||||
ComputeZBounds(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
// G-buffer data
|
||||
uniform float zBuffer[],
|
||||
uniform int32 gBufferWidth,
|
||||
// Camera data
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
uniform float cameraNear, uniform float cameraFar,
|
||||
// Output
|
||||
reference uniform float minZ,
|
||||
reference uniform float maxZ
|
||||
)
|
||||
{
|
||||
// Find Z bounds
|
||||
float laneMinZ = cameraFar;
|
||||
float laneMaxZ = cameraNear;
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
|
||||
for (uniform int32 x = tileStartX; x < tileEndX; x += programCount) {
|
||||
// Unproject depth buffer Z value into view space
|
||||
float z = zBuffer[(y * gBufferWidth + x) + programIndex];
|
||||
float viewSpaceZ = cameraProj_43 / (z - cameraProj_33);
|
||||
|
||||
// Work out Z bounds for our samples
|
||||
// Avoid considering skybox/background or otherwise invalid pixels
|
||||
if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) {
|
||||
laneMinZ = min(laneMinZ, viewSpaceZ);
|
||||
laneMaxZ = max(laneMaxZ, viewSpaceZ);
|
||||
}
|
||||
}
|
||||
}
|
||||
minZ = reduce_min(laneMinZ);
|
||||
maxZ = reduce_max(laneMaxZ);
|
||||
}
|
||||
|
||||
|
||||
// tile width must be a multiple of programCount (SIMD size)
|
||||
// numLights must currently be a multiple of programCount (SIMD size)
|
||||
export uniform int32
|
||||
IntersectLightsWithTileMinMax(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
// Tile data
|
||||
uniform float minZ,
|
||||
uniform float maxZ,
|
||||
// G-buffer data
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
// Light Data
|
||||
uniform int32 numLights,
|
||||
uniform float light_positionView_x_array[],
|
||||
uniform float light_positionView_y_array[],
|
||||
uniform float light_positionView_z_array[],
|
||||
uniform float light_attenuationEnd_array[],
|
||||
// Output
|
||||
reference uniform int32 tileLightIndices[]
|
||||
)
|
||||
{
|
||||
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
|
||||
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
|
||||
|
||||
// Parallize across frustum planes.
|
||||
// We really only have four side planes here, but write the code to
|
||||
// handle programCount > 4 robustly
|
||||
uniform float frustumPlanes_xy[programCount];
|
||||
uniform float frustumPlanes_z[programCount];
|
||||
|
||||
// TODO: If programIndex < 4 here? Don't care about masking off the
|
||||
// rest but if interleaving ("x2" modes) the other lanes should ideally
|
||||
// not be emitted...
|
||||
{
|
||||
// This one is totally constant over the whole screen... worth pulling it up at all?
|
||||
float frustumPlanes_xy_v;
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 0, -(cameraProj_11 * gBufferScale_x));
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 1, (cameraProj_11 * gBufferScale_x));
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 2, (cameraProj_22 * gBufferScale_y));
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 3, -(cameraProj_22 * gBufferScale_y));
|
||||
|
||||
float frustumPlanes_z_v;
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 0, tileEndX - gBufferScale_x);
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 1, -tileStartX + gBufferScale_x);
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 2, tileEndY - gBufferScale_y);
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 3, -tileStartY + gBufferScale_y);
|
||||
|
||||
// Normalize
|
||||
float norm = rsqrt(frustumPlanes_xy_v * frustumPlanes_xy_v +
|
||||
frustumPlanes_z_v * frustumPlanes_z_v);
|
||||
frustumPlanes_xy_v *= norm;
|
||||
frustumPlanes_z_v *= norm;
|
||||
|
||||
// Save out for uniform use later
|
||||
frustumPlanes_xy[programIndex] = frustumPlanes_xy_v;
|
||||
frustumPlanes_z[programIndex] = frustumPlanes_z_v;
|
||||
}
|
||||
|
||||
uniform int32 tileNumLights = 0;
|
||||
|
||||
for (uniform int32 baseLightIndex = 0; baseLightIndex < numLights;
|
||||
baseLightIndex += programCount) {
|
||||
int32 lightIndex = baseLightIndex + programIndex;
|
||||
float light_positionView_z = light_positionView_z_array[lightIndex];
|
||||
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
|
||||
float light_attenuationEndNeg = -light_attenuationEnd;
|
||||
|
||||
float d = light_positionView_z - minZ;
|
||||
bool inFrustum = (d >= light_attenuationEndNeg);
|
||||
|
||||
d = maxZ - light_positionView_z;
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
// This seems better than cif(!inFrustum) ccontinue; here since we
|
||||
// don't actually need to mask the rest of this function - this is
|
||||
// just a greedy early-out. Could also structure all of this as
|
||||
// nested if() statements, but this a bit easier to read
|
||||
if (!any(inFrustum))
|
||||
continue;
|
||||
|
||||
float light_positionView_x = light_positionView_x_array[lightIndex];
|
||||
float light_positionView_y = light_positionView_y_array[lightIndex];
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[0] +
|
||||
light_positionView_x * frustumPlanes_xy[0];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[1] +
|
||||
light_positionView_x * frustumPlanes_xy[1];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[2] +
|
||||
light_positionView_y * frustumPlanes_xy[2];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[3] +
|
||||
light_positionView_y * frustumPlanes_xy[3];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
// Pack and store intersecting lights
|
||||
cif (inFrustum) {
|
||||
tileNumLights += packed_store_active(tileLightIndices, tileNumLights,
|
||||
lightIndex);
|
||||
}
|
||||
}
|
||||
|
||||
return tileNumLights;
|
||||
}
|
||||
|
||||
|
||||
// tile width must be a multiple of programCount (SIMD size)
|
||||
// numLights must currently be a multiple of programCount (SIMD size)
|
||||
static uniform int32
|
||||
IntersectLightsWithTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
// G-buffer data
|
||||
uniform float zBuffer[],
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
uniform float cameraNear, uniform float cameraFar,
|
||||
// Light Data
|
||||
uniform int32 numLights,
|
||||
uniform float light_positionView_x_array[],
|
||||
uniform float light_positionView_y_array[],
|
||||
uniform float light_positionView_z_array[],
|
||||
uniform float light_attenuationEnd_array[],
|
||||
// Output
|
||||
reference uniform int32 tileLightIndices[]
|
||||
)
|
||||
{
|
||||
uniform float minZ, maxZ;
|
||||
ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY,
|
||||
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar,
|
||||
minZ, maxZ);
|
||||
|
||||
uniform int32 tileNumLights = IntersectLightsWithTileMinMax(
|
||||
tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ,
|
||||
gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22,
|
||||
MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array,
|
||||
light_positionView_z_array, light_attenuationEnd_array,
|
||||
tileLightIndices);
|
||||
|
||||
return tileNumLights;
|
||||
}
|
||||
|
||||
|
||||
// tile width must be a multiple of programCount (SIMD size)
|
||||
export void
|
||||
ShadeTile(
|
||||
uniform int32 tileStartX, uniform int32 tileEndX,
|
||||
uniform int32 tileStartY, uniform int32 tileEndY,
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
reference uniform InputDataArrays inputData,
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
// Light list
|
||||
reference uniform int32 tileLightIndices[],
|
||||
uniform int32 tileNumLights,
|
||||
// UI
|
||||
uniform bool visualizeLightCount,
|
||||
// Output
|
||||
reference uniform unsigned int8 framebuffer_r[],
|
||||
reference uniform unsigned int8 framebuffer_g[],
|
||||
reference uniform unsigned int8 framebuffer_b[]
|
||||
)
|
||||
{
|
||||
if (tileNumLights == 0 || visualizeLightCount) {
|
||||
uniform unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255));
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
|
||||
for (uniform int32 x = tileStartX; x < tileEndX; x += programCount) {
|
||||
int32 framebufferIndex = (y * gBufferWidth + x) + programIndex;
|
||||
framebuffer_r[framebufferIndex] = c;
|
||||
framebuffer_g[framebufferIndex] = c;
|
||||
framebuffer_b[framebufferIndex] = c;
|
||||
}
|
||||
}
|
||||
} else {
|
||||
uniform float twoOverGBufferWidth = 2.0f / gBufferWidth;
|
||||
uniform float twoOverGBufferHeight = 2.0f / gBufferHeight;
|
||||
|
||||
for (uniform int32 y = tileStartY; y < tileEndY; ++y) {
|
||||
uniform float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
|
||||
|
||||
for (uniform int32 x = tileStartX; x < tileEndX; x += programCount) {
|
||||
uniform int32 gBufferOffsetBase = y * gBufferWidth + x;
|
||||
int32 gBufferOffset = gBufferOffsetBase + programIndex;
|
||||
|
||||
// Reconstruct position and (negative) view vector from G-buffer
|
||||
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
|
||||
float Vneg_x, Vneg_y, Vneg_z;
|
||||
|
||||
float z = inputData.zBuffer[gBufferOffset];
|
||||
|
||||
// Compute screen/clip-space position
|
||||
// NOTE: Mind DX11 viewport transform and pixel center!
|
||||
float positionScreen_x = (0.5f + (float)(x + programIndex)) *
|
||||
twoOverGBufferWidth - 1.0f;
|
||||
|
||||
// Unproject depth buffer Z value into view space
|
||||
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
|
||||
surface_positionView_x = positionScreen_x * surface_positionView_z /
|
||||
cameraProj_11;
|
||||
surface_positionView_y = positionScreen_y * surface_positionView_z /
|
||||
cameraProj_22;
|
||||
|
||||
// We actually end up with a vector pointing *at* the
|
||||
// surface (i.e. the negative view vector)
|
||||
normalize3(surface_positionView_x, surface_positionView_y,
|
||||
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
|
||||
|
||||
// Reconstruct normal from G-buffer
|
||||
float surface_normal_x, surface_normal_y, surface_normal_z;
|
||||
float normal_x = half_to_float_fast(inputData.normalEncoded_x[gBufferOffset]);
|
||||
float normal_y = half_to_float_fast(inputData.normalEncoded_y[gBufferOffset]);
|
||||
|
||||
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
|
||||
float m = sqrt(4.0f * f - 1.0f);
|
||||
|
||||
surface_normal_x = m * (4.0f * normal_x - 2.0f);
|
||||
surface_normal_y = m * (4.0f * normal_y - 2.0f);
|
||||
surface_normal_z = 3.0f - 8.0f * f;
|
||||
|
||||
// Load other G-buffer parameters
|
||||
float surface_specularAmount =
|
||||
half_to_float_fast(inputData.specularAmount[gBufferOffset]);
|
||||
float surface_specularPower =
|
||||
half_to_float_fast(inputData.specularPower[gBufferOffset]);
|
||||
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
|
||||
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
|
||||
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
|
||||
|
||||
float lit_x = 0.0f;
|
||||
float lit_y = 0.0f;
|
||||
float lit_z = 0.0f;
|
||||
for (uniform int32 tileLightIndex = 0; tileLightIndex < tileNumLights;
|
||||
++tileLightIndex) {
|
||||
uniform int32 lightIndex = tileLightIndices[tileLightIndex];
|
||||
|
||||
// Gather light data relevant to initial culling
|
||||
uniform float light_positionView_x =
|
||||
inputData.lightPositionView_x[lightIndex];
|
||||
uniform float light_positionView_y =
|
||||
inputData.lightPositionView_y[lightIndex];
|
||||
uniform float light_positionView_z =
|
||||
inputData.lightPositionView_z[lightIndex];
|
||||
uniform float light_attenuationEnd =
|
||||
inputData.lightAttenuationEnd[lightIndex];
|
||||
|
||||
// Compute light vector
|
||||
float L_x = light_positionView_x - surface_positionView_x;
|
||||
float L_y = light_positionView_y - surface_positionView_y;
|
||||
float L_z = light_positionView_z - surface_positionView_z;
|
||||
|
||||
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
|
||||
|
||||
// Clip at end of attenuation
|
||||
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
|
||||
|
||||
cif (distanceToLight2 < light_attenutaionEnd2) {
|
||||
float distanceToLight = sqrt(distanceToLight2);
|
||||
|
||||
// HLSL "rcp" is allowed to be fairly inaccurate
|
||||
float distanceToLightRcp = rcp(distanceToLight);
|
||||
L_x *= distanceToLightRcp;
|
||||
L_y *= distanceToLightRcp;
|
||||
L_z *= distanceToLightRcp;
|
||||
|
||||
// Start computing brdf
|
||||
float NdotL = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, L_x, L_y, L_z);
|
||||
|
||||
// Clip back facing
|
||||
cif (NdotL > 0.0f) {
|
||||
uniform float light_attenuationBegin =
|
||||
inputData.lightAttenuationBegin[lightIndex];
|
||||
|
||||
// Light distance attenuation (linstep)
|
||||
float lightRange = (light_attenuationEnd - light_attenuationBegin);
|
||||
float falloffPosition = (light_attenuationEnd - distanceToLight);
|
||||
float attenuation = min(falloffPosition / lightRange, 1.0f);
|
||||
|
||||
float H_x = (L_x - Vneg_x);
|
||||
float H_y = (L_y - Vneg_y);
|
||||
float H_z = (L_z - Vneg_z);
|
||||
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
|
||||
|
||||
float NdotH = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, H_x, H_y, H_z);
|
||||
NdotH = max(NdotH, 0.0f);
|
||||
|
||||
float specular = pow(NdotH, surface_specularPower);
|
||||
float specularNorm = (surface_specularPower + 2.0f) *
|
||||
(1.0f / 8.0f);
|
||||
float specularContrib = surface_specularAmount *
|
||||
specularNorm * specular;
|
||||
|
||||
float k = attenuation * NdotL * (1.0f + specularContrib);
|
||||
|
||||
uniform float light_color_x = inputData.lightColor_x[lightIndex];
|
||||
uniform float light_color_y = inputData.lightColor_y[lightIndex];
|
||||
uniform float light_color_z = inputData.lightColor_z[lightIndex];
|
||||
|
||||
float lightContrib_x = surface_albedo_x * light_color_x;
|
||||
float lightContrib_y = surface_albedo_y * light_color_y;
|
||||
float lightContrib_z = surface_albedo_z * light_color_z;
|
||||
|
||||
lit_x += lightContrib_x * k;
|
||||
lit_y += lightContrib_y * k;
|
||||
lit_z += lightContrib_z * k;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Gamma correct
|
||||
// These pows are pretty slow right now, but we can do
|
||||
// something faster if really necessary to squeeze every
|
||||
// last bit of performance out of it
|
||||
float gamma = 1.0 / 2.2f;
|
||||
lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma);
|
||||
lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma);
|
||||
lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma);
|
||||
|
||||
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
|
||||
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
|
||||
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Static decomposition
|
||||
|
||||
task void
|
||||
RenderTile(uniform int g, uniform int num_groups_x, uniform int num_groups_y,
|
||||
reference uniform InputHeader inputHeader,
|
||||
reference uniform InputDataArrays inputData,
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
reference uniform unsigned int8 framebuffer_r[],
|
||||
reference uniform unsigned int8 framebuffer_g[],
|
||||
reference uniform unsigned int8 framebuffer_b[]) {
|
||||
uniform int32 group_y = g / num_groups_x;
|
||||
uniform int32 group_x = g % num_groups_x;
|
||||
uniform int32 tile_start_x = group_x * MIN_TILE_WIDTH;
|
||||
uniform int32 tile_start_y = group_y * MIN_TILE_HEIGHT;
|
||||
uniform int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH;
|
||||
uniform int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT;
|
||||
|
||||
uniform int sTileNumLights = 0;
|
||||
uniform int sTileLightIndices[MAX_LIGHTS]; // Light list for the tile
|
||||
|
||||
uniform int framebufferWidth = inputHeader.framebufferWidth;
|
||||
uniform int framebufferHeight = inputHeader.framebufferHeight;
|
||||
uniform float cameraProj_00 = inputHeader.cameraProj[0][0];
|
||||
uniform float cameraProj_11 = inputHeader.cameraProj[1][1];
|
||||
uniform float cameraProj_22 = inputHeader.cameraProj[2][2];
|
||||
uniform float cameraProj_32 = inputHeader.cameraProj[3][2];
|
||||
|
||||
// Light intersection
|
||||
sTileNumLights =
|
||||
IntersectLightsWithTile(tile_start_x, tile_end_x,
|
||||
tile_start_y, tile_end_y,
|
||||
framebufferWidth, framebufferHeight,
|
||||
inputData.zBuffer,
|
||||
cameraProj_00, cameraProj_11,
|
||||
cameraProj_22, cameraProj_32,
|
||||
inputHeader.cameraNear, inputHeader.cameraFar,
|
||||
MAX_LIGHTS,
|
||||
inputData.lightPositionView_x,
|
||||
inputData.lightPositionView_y,
|
||||
inputData.lightPositionView_z,
|
||||
inputData.lightAttenuationEnd,
|
||||
sTileLightIndices);
|
||||
|
||||
ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y,
|
||||
framebufferWidth, framebufferHeight, inputData,
|
||||
cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32,
|
||||
sTileLightIndices, sTileNumLights, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b);
|
||||
}
|
||||
|
||||
|
||||
export void
|
||||
RenderStatic(reference uniform InputHeader inputHeader,
|
||||
reference uniform InputDataArrays inputData,
|
||||
uniform int visualizeLightCount,
|
||||
// Output
|
||||
reference uniform unsigned int8 framebuffer_r[],
|
||||
reference uniform unsigned int8 framebuffer_g[],
|
||||
reference uniform unsigned int8 framebuffer_b[]) {
|
||||
uniform int num_groups_x = (inputHeader.framebufferWidth +
|
||||
MIN_TILE_WIDTH - 1) / MIN_TILE_WIDTH;
|
||||
uniform int num_groups_y = (inputHeader.framebufferHeight +
|
||||
MIN_TILE_HEIGHT - 1) / MIN_TILE_HEIGHT;
|
||||
uniform int num_groups = num_groups_x * num_groups_y;
|
||||
|
||||
for (uniform int g = 0; g < num_groups; ++g)
|
||||
launch < RenderTile(g, num_groups_x, num_groups_y,
|
||||
inputHeader, inputData, visualizeLightCount,
|
||||
framebuffer_r, framebuffer_g, framebuffer_b) >;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// Routines for dynamic decomposition path
|
||||
|
||||
// tile width must be a multiple of programCount (SIMD size)
|
||||
export void
|
||||
ComputeZBoundsRow(
|
||||
uniform int32 tileY,
|
||||
uniform int32 tileWidth, uniform int32 tileHeight,
|
||||
uniform int32 numTilesX, uniform int32 numTilesY,
|
||||
// G-buffer data
|
||||
uniform float zBuffer[],
|
||||
uniform int32 gBufferWidth,
|
||||
// Camera data
|
||||
uniform float cameraProj_33, uniform float cameraProj_43,
|
||||
uniform float cameraNear, uniform float cameraFar,
|
||||
// Output
|
||||
reference uniform float minZArray[],
|
||||
reference uniform float maxZArray[]
|
||||
)
|
||||
{
|
||||
for (uniform int32 tileX = 0; tileX < numTilesX; ++tileX) {
|
||||
uniform float minZ, maxZ;
|
||||
ComputeZBounds(
|
||||
tileX * tileWidth, tileX * tileWidth + tileWidth,
|
||||
tileY * tileHeight, tileY * tileHeight + tileHeight,
|
||||
zBuffer, gBufferWidth,
|
||||
cameraProj_33, cameraProj_43, cameraNear, cameraFar,
|
||||
minZ, maxZ);
|
||||
minZArray[tileX] = minZ;
|
||||
maxZArray[tileX] = maxZ;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// numLights need not be a multiple of programCount here, but the input and output arrays
|
||||
// should be able to handle programCount-sized load/stores.
|
||||
export void
|
||||
SplitTileMinMax(
|
||||
uniform int32 tileMidX, uniform int32 tileMidY,
|
||||
// Subtile data (00, 10, 01, 11)
|
||||
uniform float subtileMinZ[],
|
||||
uniform float subtileMaxZ[],
|
||||
// G-buffer data
|
||||
uniform int32 gBufferWidth, uniform int32 gBufferHeight,
|
||||
// Camera data
|
||||
uniform float cameraProj_11, uniform float cameraProj_22,
|
||||
// Light Data
|
||||
reference uniform int32 lightIndices[],
|
||||
uniform int32 numLights,
|
||||
uniform float light_positionView_x_array[],
|
||||
uniform float light_positionView_y_array[],
|
||||
uniform float light_positionView_z_array[],
|
||||
uniform float light_attenuationEnd_array[],
|
||||
// Outputs
|
||||
// TODO: ISPC doesn't currently like multidimensionsal arrays so we'll do the
|
||||
// indexing math ourselves
|
||||
reference uniform int32 subtileIndices[],
|
||||
uniform int32 subtileIndicesPitch,
|
||||
reference uniform int32 subtileNumLights[]
|
||||
)
|
||||
{
|
||||
uniform float gBufferScale_x = 0.5f * (float)gBufferWidth;
|
||||
uniform float gBufferScale_y = 0.5f * (float)gBufferHeight;
|
||||
|
||||
// Parallize across frustum planes
|
||||
// Only have 2 frustum split planes here so may not be worth it, but
|
||||
// we'll do it for now for consistency
|
||||
uniform float frustumPlanes_xy[programCount];
|
||||
uniform float frustumPlanes_z[programCount];
|
||||
|
||||
// This one is totally constant over the whole screen... worth pulling it up at all?
|
||||
float frustumPlanes_xy_v;
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 0, -(cameraProj_11 * gBufferScale_x));
|
||||
frustumPlanes_xy_v = insert(frustumPlanes_xy_v, 1, (cameraProj_22 * gBufferScale_y));
|
||||
|
||||
float frustumPlanes_z_v;
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 0, tileMidX - gBufferScale_x);
|
||||
frustumPlanes_z_v = insert(frustumPlanes_z_v, 1, tileMidY - gBufferScale_y);
|
||||
|
||||
// Normalize
|
||||
float norm = rsqrt(frustumPlanes_xy_v * frustumPlanes_xy_v +
|
||||
frustumPlanes_z_v * frustumPlanes_z_v);
|
||||
frustumPlanes_xy_v *= norm;
|
||||
frustumPlanes_z_v *= norm;
|
||||
|
||||
// Save out for uniform use later
|
||||
frustumPlanes_xy[programIndex] = frustumPlanes_xy_v;
|
||||
frustumPlanes_z[programIndex] = frustumPlanes_z_v;
|
||||
|
||||
// Initialize
|
||||
uniform int32 subtileLightOffset[4];
|
||||
subtileLightOffset[0] = 0 * subtileIndicesPitch;
|
||||
subtileLightOffset[1] = 1 * subtileIndicesPitch;
|
||||
subtileLightOffset[2] = 2 * subtileIndicesPitch;
|
||||
subtileLightOffset[3] = 3 * subtileIndicesPitch;
|
||||
|
||||
for (int32 i = programIndex; i < numLights; i += programCount) {
|
||||
// TODO: ISPC says gather required here when it actually
|
||||
// isn't... this could be fixed this by nesting an if() within a
|
||||
// uniform loop, but I'm not totally sure if that's a win
|
||||
// overall. For now we'll just eat the perf cost for cleanliness
|
||||
// since the below are real gathers anyways.
|
||||
int32 lightIndex = lightIndices[i];
|
||||
|
||||
float light_positionView_x = light_positionView_x_array[lightIndex];
|
||||
float light_positionView_y = light_positionView_y_array[lightIndex];
|
||||
float light_positionView_z = light_positionView_z_array[lightIndex];
|
||||
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
|
||||
float light_attenuationEndNeg = -light_attenuationEnd;
|
||||
|
||||
// Test lights again subtile z bounds
|
||||
bool inFrustum[4];
|
||||
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
|
||||
|
||||
float dx = light_positionView_z * frustumPlanes_z[0] +
|
||||
light_positionView_x * frustumPlanes_xy[0];
|
||||
float dy = light_positionView_z * frustumPlanes_z[1] +
|
||||
light_positionView_y * frustumPlanes_xy[1];
|
||||
|
||||
cif (abs(dx) > light_attenuationEnd) {
|
||||
bool positiveX = dx > 0.0f;
|
||||
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
|
||||
inFrustum[1] = inFrustum[1] && !positiveX; // 10 subtile
|
||||
inFrustum[2] = inFrustum[2] && positiveX; // 01 subtile
|
||||
inFrustum[3] = inFrustum[3] && !positiveX; // 11 subtile
|
||||
}
|
||||
cif (abs(dy) > light_attenuationEnd) {
|
||||
bool positiveY = dy > 0.0f;
|
||||
inFrustum[0] = inFrustum[0] && positiveY; // 00 subtile
|
||||
inFrustum[1] = inFrustum[1] && positiveY; // 10 subtile
|
||||
inFrustum[2] = inFrustum[2] && !positiveY; // 01 subtile
|
||||
inFrustum[3] = inFrustum[3] && !positiveY; // 11 subtile
|
||||
}
|
||||
|
||||
// Pack and store intersecting lights
|
||||
// TODO: Experiment with a loop here instead
|
||||
cif (inFrustum[0])
|
||||
subtileLightOffset[0] += packed_store_active(subtileIndices,
|
||||
subtileLightOffset[0],
|
||||
lightIndex);
|
||||
cif (inFrustum[1])
|
||||
subtileLightOffset[1] += packed_store_active(subtileIndices,
|
||||
subtileLightOffset[1],
|
||||
lightIndex);
|
||||
cif (inFrustum[2])
|
||||
subtileLightOffset[2] += packed_store_active(subtileIndices,
|
||||
subtileLightOffset[2],
|
||||
lightIndex);
|
||||
cif (inFrustum[3])
|
||||
subtileLightOffset[3] += packed_store_active(subtileIndices,
|
||||
subtileLightOffset[3],
|
||||
lightIndex);
|
||||
}
|
||||
|
||||
subtileNumLights[0] = subtileLightOffset[0] - 0 * subtileIndicesPitch;
|
||||
subtileNumLights[1] = subtileLightOffset[1] - 1 * subtileIndicesPitch;
|
||||
subtileNumLights[2] = subtileLightOffset[2] - 2 * subtileIndicesPitch;
|
||||
subtileNumLights[3] = subtileLightOffset[3] - 3 * subtileIndicesPitch;
|
||||
}
|
||||
Reference in New Issue
Block a user