White space and copyright fixes in examples.
This commit is contained in:
@@ -1,5 +1,5 @@
|
||||
/*
|
||||
Copyright (c) 2011, Intel Corporation
|
||||
Copyright (c) 2011-2014, Intel Corporation
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
@@ -28,7 +28,7 @@
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#include "deferred.h"
|
||||
@@ -147,7 +147,7 @@ ComputeZBoundsRow(int tileY, int tileWidth, int tileHeight,
|
||||
float minZ, maxZ;
|
||||
ComputeZBounds(tileX * tileWidth, tileX * tileWidth + tileWidth,
|
||||
tileY * tileHeight, tileY * tileHeight + tileHeight,
|
||||
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43,
|
||||
zBuffer, gBufferWidth, cameraProj_33, cameraProj_43,
|
||||
cameraNear, cameraFar, &minZ, &maxZ);
|
||||
minZArray[tileX] = minZ;
|
||||
maxZArray[tileX] = maxZ;
|
||||
@@ -167,7 +167,7 @@ public:
|
||||
{
|
||||
mNumTilesX = gBufferWidth / mTileWidth;
|
||||
mNumTilesY = gBufferHeight / mTileHeight;
|
||||
|
||||
|
||||
// Allocate arrays
|
||||
mMinZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
|
||||
mMaxZArrays = (float **)lAlignedMalloc(sizeof(float *) * mLevels, 16);
|
||||
@@ -213,7 +213,7 @@ public:
|
||||
float minZ = mMinZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
|
||||
float maxZ = mMaxZArrays[srcLevel][(srcY) * srcTilesX + (srcX)];
|
||||
if (srcX + 1 < srcTilesX) {
|
||||
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY) * srcTilesX +
|
||||
minZ = std::min(minZ, mMinZArrays[srcLevel][(srcY) * srcTilesX +
|
||||
(srcX + 1)]);
|
||||
maxZ = std::max(maxZ, mMaxZArrays[srcLevel][(srcY) * srcTilesX +
|
||||
(srcX + 1)]);
|
||||
@@ -243,7 +243,7 @@ public:
|
||||
lAlignedFree(mMaxZArrays[i]);
|
||||
}
|
||||
lAlignedFree(mMinZArrays);
|
||||
lAlignedFree(mMaxZArrays);
|
||||
lAlignedFree(mMaxZArrays);
|
||||
}
|
||||
|
||||
int Levels() const { return mLevels; }
|
||||
@@ -277,9 +277,9 @@ private:
|
||||
static MinMaxZTree *gMinMaxZTree = 0;
|
||||
|
||||
void InitDynamicC(InputData *input) {
|
||||
gMinMaxZTree =
|
||||
gMinMaxZTree =
|
||||
new MinMaxZTree(MIN_TILE_WIDTH, MIN_TILE_HEIGHT, DYNAMIC_TREE_LEVELS,
|
||||
input->header.framebufferWidth,
|
||||
input->header.framebufferWidth,
|
||||
input->header.framebufferHeight);
|
||||
}
|
||||
|
||||
@@ -311,7 +311,7 @@ SplitTileMinMax(
|
||||
{
|
||||
float gBufferScale_x = 0.5f * (float)gBufferWidth;
|
||||
float gBufferScale_y = 0.5f * (float)gBufferHeight;
|
||||
|
||||
|
||||
float frustumPlanes_xy[2] = { -(cameraProj_11 * gBufferScale_x),
|
||||
(cameraProj_22 * gBufferScale_y) };
|
||||
float frustumPlanes_z[2] = { tileMidX - gBufferScale_x,
|
||||
@@ -319,7 +319,7 @@ SplitTileMinMax(
|
||||
|
||||
for (int i = 0; i < 2; ++i) {
|
||||
// Normalize
|
||||
float norm = 1.f / sqrtf(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
|
||||
float norm = 1.f / sqrtf(frustumPlanes_xy[i] * frustumPlanes_xy[i] +
|
||||
frustumPlanes_z[i] * frustumPlanes_z[i]);
|
||||
frustumPlanes_xy[i] *= norm;
|
||||
frustumPlanes_z[i] *= norm;
|
||||
@@ -340,23 +340,23 @@ SplitTileMinMax(
|
||||
float light_positionView_z = light_positionView_z_array[lightIndex];
|
||||
float light_attenuationEnd = light_attenuationEnd_array[lightIndex];
|
||||
float light_attenuationEndNeg = -light_attenuationEnd;
|
||||
|
||||
|
||||
// Test lights again against subtile z bounds
|
||||
bool inFrustum[4];
|
||||
inFrustum[0] = (light_positionView_z - subtileMinZ[0] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[0] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
|
||||
inFrustum[1] = (light_positionView_z - subtileMinZ[1] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[1] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
|
||||
inFrustum[2] = (light_positionView_z - subtileMinZ[2] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[2] - light_positionView_z >= light_attenuationEndNeg);
|
||||
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
|
||||
inFrustum[3] = (light_positionView_z - subtileMinZ[3] >= light_attenuationEndNeg) &&
|
||||
(subtileMaxZ[3] - light_positionView_z >= light_attenuationEndNeg);
|
||||
|
||||
float dx = light_positionView_z * frustumPlanes_z[0] +
|
||||
float dx = light_positionView_z * frustumPlanes_z[0] +
|
||||
light_positionView_x * frustumPlanes_xy[0];
|
||||
float dy = light_positionView_z * frustumPlanes_z[1] +
|
||||
light_positionView_y * frustumPlanes_xy[1];
|
||||
|
||||
|
||||
if (fabsf(dx) > light_attenuationEnd) {
|
||||
bool positiveX = dx > 0.0f;
|
||||
inFrustum[0] = inFrustum[0] && positiveX; // 00 subtile
|
||||
@@ -423,13 +423,13 @@ half_to_float_fast(uint16_t h) {
|
||||
uint32_t hm = h & (int32_t)0x03FFu; // Pick off mantissa bits
|
||||
|
||||
// sign
|
||||
uint32_t xs = ((uint32_t) hs) << 16;
|
||||
uint32_t xs = ((uint32_t) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32_t xes = ((int32_t) (he >> 10)) - 15 + 127;
|
||||
int32_t xes = ((int32_t) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
uint32_t xe = (uint32_t) (xes << 23);
|
||||
// Mantissa
|
||||
uint32_t xm = ((uint32_t) hm) << 13;
|
||||
uint32_t xm = ((uint32_t) hm) << 13;
|
||||
|
||||
uint32_t bits = (xs | xe | xm);
|
||||
float *fp = reinterpret_cast<float *>(&bits);
|
||||
@@ -470,13 +470,13 @@ ShadeTileC(
|
||||
} else {
|
||||
float twoOverGBufferWidth = 2.0f / gBufferWidth;
|
||||
float twoOverGBufferHeight = 2.0f / gBufferHeight;
|
||||
|
||||
|
||||
for (int32_t y = tileStartY; y < tileEndY; ++y) {
|
||||
float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f);
|
||||
|
||||
for (int32_t x = tileStartX; x < tileEndX; ++x) {
|
||||
int32_t gBufferOffset = y * gBufferWidth + x;
|
||||
|
||||
|
||||
// Reconstruct position and (negative) view vector from G-buffer
|
||||
float surface_positionView_x, surface_positionView_y, surface_positionView_z;
|
||||
float Vneg_x, Vneg_y, Vneg_z;
|
||||
@@ -485,70 +485,70 @@ ShadeTileC(
|
||||
|
||||
// Compute screen/clip-space position
|
||||
// NOTE: Mind DX11 viewport transform and pixel center!
|
||||
float positionScreen_x = (0.5f + (float)(x)) *
|
||||
float positionScreen_x = (0.5f + (float)(x)) *
|
||||
twoOverGBufferWidth - 1.0f;
|
||||
|
||||
// Unproject depth buffer Z value into view space
|
||||
surface_positionView_z = cameraProj_43 / (z - cameraProj_33);
|
||||
surface_positionView_x = positionScreen_x * surface_positionView_z /
|
||||
surface_positionView_x = positionScreen_x * surface_positionView_z /
|
||||
cameraProj_11;
|
||||
surface_positionView_y = positionScreen_y * surface_positionView_z /
|
||||
surface_positionView_y = positionScreen_y * surface_positionView_z /
|
||||
cameraProj_22;
|
||||
|
||||
|
||||
// We actually end up with a vector pointing *at* the
|
||||
// surface (i.e. the negative view vector)
|
||||
normalize3(surface_positionView_x, surface_positionView_y,
|
||||
normalize3(surface_positionView_x, surface_positionView_y,
|
||||
surface_positionView_z, Vneg_x, Vneg_y, Vneg_z);
|
||||
|
||||
// Reconstruct normal from G-buffer
|
||||
float surface_normal_x, surface_normal_y, surface_normal_z;
|
||||
float normal_x = half_to_float_fast(inputData.normalEncoded_x[gBufferOffset]);
|
||||
float normal_y = half_to_float_fast(inputData.normalEncoded_y[gBufferOffset]);
|
||||
|
||||
|
||||
float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y);
|
||||
float m = sqrtf(4.0f * f - 1.0f);
|
||||
|
||||
|
||||
surface_normal_x = m * (4.0f * normal_x - 2.0f);
|
||||
surface_normal_y = m * (4.0f * normal_y - 2.0f);
|
||||
surface_normal_z = 3.0f - 8.0f * f;
|
||||
|
||||
// Load other G-buffer parameters
|
||||
float surface_specularAmount =
|
||||
float surface_specularAmount =
|
||||
half_to_float_fast(inputData.specularAmount[gBufferOffset]);
|
||||
float surface_specularPower =
|
||||
float surface_specularPower =
|
||||
half_to_float_fast(inputData.specularPower[gBufferOffset]);
|
||||
float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]);
|
||||
float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]);
|
||||
float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]);
|
||||
|
||||
|
||||
float lit_x = 0.0f;
|
||||
float lit_y = 0.0f;
|
||||
float lit_z = 0.0f;
|
||||
for (int32_t tileLightIndex = 0; tileLightIndex < tileNumLights;
|
||||
for (int32_t tileLightIndex = 0; tileLightIndex < tileNumLights;
|
||||
++tileLightIndex) {
|
||||
int32_t lightIndex = tileLightIndices[tileLightIndex];
|
||||
|
||||
|
||||
// Gather light data relevant to initial culling
|
||||
float light_positionView_x =
|
||||
float light_positionView_x =
|
||||
inputData.lightPositionView_x[lightIndex];
|
||||
float light_positionView_y =
|
||||
float light_positionView_y =
|
||||
inputData.lightPositionView_y[lightIndex];
|
||||
float light_positionView_z =
|
||||
float light_positionView_z =
|
||||
inputData.lightPositionView_z[lightIndex];
|
||||
float light_attenuationEnd =
|
||||
float light_attenuationEnd =
|
||||
inputData.lightAttenuationEnd[lightIndex];
|
||||
|
||||
|
||||
// Compute light vector
|
||||
float L_x = light_positionView_x - surface_positionView_x;
|
||||
float L_y = light_positionView_y - surface_positionView_y;
|
||||
float L_z = light_positionView_z - surface_positionView_z;
|
||||
|
||||
float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z);
|
||||
|
||||
|
||||
// Clip at end of attenuation
|
||||
float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd;
|
||||
|
||||
if (distanceToLight2 < light_attenutaionEnd2) {
|
||||
if (distanceToLight2 < light_attenutaionEnd2) {
|
||||
float distanceToLight = sqrtf(distanceToLight2);
|
||||
|
||||
float distanceToLightRcp = 1.f / distanceToLight;
|
||||
@@ -557,12 +557,12 @@ ShadeTileC(
|
||||
L_z *= distanceToLightRcp;
|
||||
|
||||
// Start computing brdf
|
||||
float NdotL = dot3(surface_normal_x, surface_normal_y,
|
||||
float NdotL = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, L_x, L_y, L_z);
|
||||
|
||||
|
||||
// Clip back facing
|
||||
if (NdotL > 0.0f) {
|
||||
float light_attenuationBegin =
|
||||
float light_attenuationBegin =
|
||||
inputData.lightAttenuationBegin[lightIndex];
|
||||
|
||||
// Light distance attenuation (linstep)
|
||||
@@ -574,19 +574,19 @@ ShadeTileC(
|
||||
float H_y = (L_y - Vneg_y);
|
||||
float H_z = (L_z - Vneg_z);
|
||||
normalize3(H_x, H_y, H_z, H_x, H_y, H_z);
|
||||
|
||||
float NdotH = dot3(surface_normal_x, surface_normal_y,
|
||||
|
||||
float NdotH = dot3(surface_normal_x, surface_normal_y,
|
||||
surface_normal_z, H_x, H_y, H_z);
|
||||
NdotH = std::max(NdotH, 0.0f);
|
||||
|
||||
float specular = powf(NdotH, surface_specularPower);
|
||||
float specularNorm = (surface_specularPower + 2.0f) *
|
||||
float specularNorm = (surface_specularPower + 2.0f) *
|
||||
(1.0f / 8.0f);
|
||||
float specularContrib = surface_specularAmount *
|
||||
float specularContrib = surface_specularAmount *
|
||||
specularNorm * specular;
|
||||
|
||||
float k = attenuation * NdotL * (1.0f + specularContrib);
|
||||
|
||||
|
||||
float light_color_x = inputData.lightColor_x[lightIndex];
|
||||
float light_color_y = inputData.lightColor_y[lightIndex];
|
||||
float light_color_z = inputData.lightColor_z[lightIndex];
|
||||
@@ -607,7 +607,7 @@ ShadeTileC(
|
||||
lit_x = powf(std::min(std::max(lit_x, 0.0f), 1.0f), gamma);
|
||||
lit_y = powf(std::min(std::max(lit_y, 0.0f), 1.0f), gamma);
|
||||
lit_z = powf(std::min(std::max(lit_z, 0.0f), 1.0f), gamma);
|
||||
|
||||
|
||||
framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x);
|
||||
framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y);
|
||||
framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z);
|
||||
@@ -618,11 +618,11 @@ ShadeTileC(
|
||||
|
||||
|
||||
void
|
||||
ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
int *lightIndices, int numLights,
|
||||
ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
int *lightIndices, int numLights,
|
||||
Framebuffer *framebuffer) {
|
||||
const MinMaxZTree *minMaxZTree = gMinMaxZTree;
|
||||
|
||||
|
||||
// If we few enough lights or this is the base case (last level), shade
|
||||
// this full tile directly
|
||||
if (level == 0 || numLights < DYNAMIC_MIN_LIGHTS_TO_SUBDIVIDE) {
|
||||
@@ -632,18 +632,18 @@ ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
int startY = tileY * height;
|
||||
int endX = std::min(input->header.framebufferWidth, startX + width);
|
||||
int endY = std::min(input->header.framebufferHeight, startY + height);
|
||||
|
||||
|
||||
// Skip entirely offscreen tiles
|
||||
if (endX > startX && endY > startY) {
|
||||
ShadeTileC(startX, endX, startY, endY,
|
||||
input->header.framebufferWidth, input->header.framebufferHeight,
|
||||
input->arrays,
|
||||
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
||||
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
||||
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
|
||||
lightIndices, numLights, VISUALIZE_LIGHT_COUNT,
|
||||
lightIndices, numLights, VISUALIZE_LIGHT_COUNT,
|
||||
framebuffer->r, framebuffer->g, framebuffer->b);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
// Otherwise, subdivide and 4-way recurse using X and Y splitting planes
|
||||
// Move down a level in the tree
|
||||
@@ -666,9 +666,9 @@ ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
|
||||
// NOTE: Order is 00, 10, 01, 11
|
||||
// Set defaults up to cull all lights if the tile doesn't exist (offscreen)
|
||||
float minZ[4] = {input->header.cameraFar, input->header.cameraFar,
|
||||
float minZ[4] = {input->header.cameraFar, input->header.cameraFar,
|
||||
input->header.cameraFar, input->header.cameraFar};
|
||||
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear,
|
||||
float maxZ[4] = {input->header.cameraNear, input->header.cameraNear,
|
||||
input->header.cameraNear, input->header.cameraNear};
|
||||
|
||||
minZ[0] = minMaxZTree->MinZ(level, tileX, tileY);
|
||||
@@ -688,7 +688,7 @@ ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
|
||||
// Cull lights into subtile lists
|
||||
#ifdef ISPC_IS_WINDOWS
|
||||
__declspec(align(ALIGNMENT_BYTES))
|
||||
__declspec(align(ALIGNMENT_BYTES))
|
||||
#endif
|
||||
int subtileLightIndices[4][MAX_LIGHTS]
|
||||
#ifndef ISPC_IS_WINDOWS
|
||||
@@ -697,15 +697,15 @@ ShadeDynamicTileRecurse(InputData *input, int level, int tileX, int tileY,
|
||||
;
|
||||
int subtileNumLights[4];
|
||||
SplitTileMinMax(midX, midY, minZ, maxZ,
|
||||
input->header.framebufferWidth, input->header.framebufferHeight,
|
||||
input->header.framebufferWidth, input->header.framebufferHeight,
|
||||
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
||||
lightIndices, numLights, input->arrays.lightPositionView_x,
|
||||
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
||||
lightIndices, numLights, input->arrays.lightPositionView_x,
|
||||
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
||||
input->arrays.lightAttenuationEnd,
|
||||
subtileLightIndices[0], MAX_LIGHTS, subtileNumLights);
|
||||
|
||||
|
||||
// Recurse into subtiles
|
||||
ShadeDynamicTileRecurse(input, level, tileX , tileY,
|
||||
ShadeDynamicTileRecurse(input, level, tileX , tileY,
|
||||
subtileLightIndices[0], subtileNumLights[0],
|
||||
framebuffer);
|
||||
ShadeDynamicTileRecurse(input, level, tileX + 1, tileY,
|
||||
@@ -744,7 +744,7 @@ IntersectLightsWithTileMinMax(
|
||||
{
|
||||
float gBufferScale_x = 0.5f * (float)gBufferWidth;
|
||||
float gBufferScale_y = 0.5f * (float)gBufferHeight;
|
||||
|
||||
|
||||
float frustumPlanes_xy[4];
|
||||
float frustumPlanes_z[4];
|
||||
|
||||
@@ -753,14 +753,14 @@ IntersectLightsWithTileMinMax(
|
||||
(cameraProj_11 * gBufferScale_x),
|
||||
(cameraProj_22 * gBufferScale_y),
|
||||
-(cameraProj_22 * gBufferScale_y) };
|
||||
|
||||
|
||||
float frustumPlanes_z_v[4] = { tileEndX - gBufferScale_x,
|
||||
-tileStartX + gBufferScale_x,
|
||||
tileEndY - gBufferScale_y,
|
||||
-tileStartY + gBufferScale_y };
|
||||
|
||||
for (int i = 0; i < 4; ++i) {
|
||||
float norm = 1.f / sqrtf(frustumPlanes_xy_v[i] * frustumPlanes_xy_v[i] +
|
||||
float norm = 1.f / sqrtf(frustumPlanes_xy_v[i] * frustumPlanes_xy_v[i] +
|
||||
frustumPlanes_z_v[i] * frustumPlanes_z_v[i]);
|
||||
frustumPlanes_xy_v[i] *= norm;
|
||||
frustumPlanes_z_v[i] *= norm;
|
||||
@@ -781,29 +781,29 @@ IntersectLightsWithTileMinMax(
|
||||
|
||||
d = maxZ - light_positionView_z;
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
if (!inFrustum)
|
||||
|
||||
if (!inFrustum)
|
||||
continue;
|
||||
|
||||
float light_positionView_x = light_positionView_x_array[lightIndex];
|
||||
float light_positionView_y = light_positionView_y_array[lightIndex];
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[0] +
|
||||
d = light_positionView_z * frustumPlanes_z[0] +
|
||||
light_positionView_x * frustumPlanes_xy[0];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[1] +
|
||||
d = light_positionView_z * frustumPlanes_z[1] +
|
||||
light_positionView_x * frustumPlanes_xy[1];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[2] +
|
||||
d = light_positionView_z * frustumPlanes_z[2] +
|
||||
light_positionView_y * frustumPlanes_xy[2];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
d = light_positionView_z * frustumPlanes_z[3] +
|
||||
d = light_positionView_z * frustumPlanes_z[3] +
|
||||
light_positionView_y * frustumPlanes_xy[3];
|
||||
inFrustum = inFrustum && (d >= light_attenuationEndNeg);
|
||||
|
||||
|
||||
// Pack and store intersecting lights
|
||||
if (inFrustum)
|
||||
tileLightIndices[tileNumLights++] = lightIndex;
|
||||
@@ -831,7 +831,7 @@ ShadeDynamicTile(InputData *input, int level, int tileX, int tileY,
|
||||
|
||||
// This is a root tile, so first do a full 6-plane cull
|
||||
#ifdef ISPC_IS_WINDOWS
|
||||
__declspec(align(ALIGNMENT_BYTES))
|
||||
__declspec(align(ALIGNMENT_BYTES))
|
||||
#endif
|
||||
int lightIndices[MAX_LIGHTS]
|
||||
#ifndef ISPC_IS_WINDOWS
|
||||
@@ -842,12 +842,12 @@ ShadeDynamicTile(InputData *input, int level, int tileX, int tileY,
|
||||
startX, endX, startY, endY, minZ, maxZ,
|
||||
input->header.framebufferWidth, input->header.framebufferHeight,
|
||||
input->header.cameraProj[0][0], input->header.cameraProj[1][1],
|
||||
MAX_LIGHTS, input->arrays.lightPositionView_x,
|
||||
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
||||
MAX_LIGHTS, input->arrays.lightPositionView_x,
|
||||
input->arrays.lightPositionView_y, input->arrays.lightPositionView_z,
|
||||
input->arrays.lightAttenuationEnd, lightIndices);
|
||||
|
||||
// Now kick off the recursive process for this tile
|
||||
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices,
|
||||
ShadeDynamicTileRecurse(input, level, tileX, tileY, lightIndices,
|
||||
numLights, framebuffer);
|
||||
}
|
||||
|
||||
@@ -856,10 +856,10 @@ void
|
||||
DispatchDynamicC(InputData *input, Framebuffer *framebuffer)
|
||||
{
|
||||
MinMaxZTree *minMaxZTree = gMinMaxZTree;
|
||||
|
||||
|
||||
// Update min/max Z tree
|
||||
minMaxZTree->Update(input->arrays.zBuffer, input->header.framebufferWidth,
|
||||
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
|
||||
input->header.cameraProj[2][2], input->header.cameraProj[3][2],
|
||||
input->header.cameraNear, input->header.cameraFar);
|
||||
|
||||
int rootLevel = minMaxZTree->Levels() - 1;
|
||||
|
||||
Reference in New Issue
Block a user