added cuda examples
This commit is contained in:
292
examples_cuda/rt/rt_serial.cpp
Normal file
292
examples_cuda/rt/rt_serial.cpp
Normal file
@@ -0,0 +1,292 @@
|
||||
/*
|
||||
Copyright (c) 2010-2011, Intel Corporation
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are
|
||||
met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above copyright
|
||||
notice, this list of conditions and the following disclaimer in the
|
||||
documentation and/or other materials provided with the distribution.
|
||||
|
||||
* Neither the name of Intel Corporation nor the names of its
|
||||
contributors may be used to endorse or promote products derived from
|
||||
this software without specific prior written permission.
|
||||
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#define _CRT_SECURE_NO_WARNINGS
|
||||
#define NOMINMAX
|
||||
#pragma warning (disable: 4244)
|
||||
#pragma warning (disable: 4305)
|
||||
#endif
|
||||
|
||||
#include <algorithm>
|
||||
#include <stdint.h>
|
||||
|
||||
// Just enough of a float3 class to do what we need in this file.
|
||||
#ifdef _MSC_VER
|
||||
__declspec(align(16))
|
||||
#endif
|
||||
struct float3 {
|
||||
float3() { }
|
||||
float3(float xx, float yy, float zz) { x = xx; y = yy; z = zz; }
|
||||
|
||||
float3 operator*(float f) const { return float3(x*f, y*f, z*f); }
|
||||
float3 operator-(const float3 &f2) const {
|
||||
return float3(x-f2.x, y-f2.y, z-f2.z);
|
||||
}
|
||||
float3 operator*(const float3 &f2) const {
|
||||
return float3(x*f2.x, y*f2.y, z*f2.z);
|
||||
}
|
||||
float x, y, z;
|
||||
float pad; // match padding/alignment of ispc version
|
||||
}
|
||||
#ifndef _MSC_VER
|
||||
__attribute__ ((aligned(16)))
|
||||
#endif
|
||||
;
|
||||
|
||||
struct Ray {
|
||||
float3 origin, dir, invDir;
|
||||
unsigned int dirIsNeg[3];
|
||||
float mint, maxt;
|
||||
int hitId;
|
||||
};
|
||||
|
||||
|
||||
// Declare these in a namespace so the mangling matches
|
||||
namespace ispc {
|
||||
struct Triangle {
|
||||
float p[3][4]; // extra float pad after each vertex
|
||||
int32_t id;
|
||||
int32_t pad[3]; // make 16 x 32-bits
|
||||
};
|
||||
|
||||
struct LinearBVHNode {
|
||||
float bounds[2][3];
|
||||
int32_t offset; // primitives for leaf, second child for interior
|
||||
uint8_t nPrimitives;
|
||||
uint8_t splitAxis;
|
||||
uint16_t pad;
|
||||
};
|
||||
}
|
||||
|
||||
using namespace ispc;
|
||||
|
||||
inline float3 Cross(const float3 &v1, const float3 &v2) {
|
||||
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
|
||||
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
|
||||
float3 ret;
|
||||
ret.x = (v1y * v2z) - (v1z * v2y);
|
||||
ret.y = (v1z * v2x) - (v1x * v2z);
|
||||
ret.z = (v1x * v2y) - (v1y * v2x);
|
||||
return ret;
|
||||
}
|
||||
|
||||
inline float Dot(const float3 &a, const float3 &b) {
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||
}
|
||||
|
||||
|
||||
static void generateRay(const float raster2camera[4][4],
|
||||
const float camera2world[4][4],
|
||||
float x, float y, Ray &ray) {
|
||||
ray.mint = 0.f;
|
||||
ray.maxt = 1e30f;
|
||||
|
||||
ray.hitId = 0;
|
||||
|
||||
// transform raster coordinate (x, y, 0) to camera space
|
||||
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
|
||||
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
|
||||
float camz = raster2camera[2][3];
|
||||
float camw = raster2camera[3][3];
|
||||
camx /= camw;
|
||||
camy /= camw;
|
||||
camz /= camw;
|
||||
|
||||
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy +
|
||||
camera2world[0][2] * camz;
|
||||
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy +
|
||||
camera2world[1][2] * camz;
|
||||
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy +
|
||||
camera2world[2][2] * camz;
|
||||
|
||||
ray.origin.x = camera2world[0][3] / camera2world[3][3];
|
||||
ray.origin.y = camera2world[1][3] / camera2world[3][3];
|
||||
ray.origin.z = camera2world[2][3] / camera2world[3][3];
|
||||
|
||||
ray.invDir.x = 1.f / ray.dir.x;
|
||||
ray.invDir.y = 1.f / ray.dir.y;
|
||||
ray.invDir.z = 1.f / ray.dir.z;
|
||||
|
||||
ray.dirIsNeg[0] = (ray.invDir.x < 0) ? 1 : 0;
|
||||
ray.dirIsNeg[1] = (ray.invDir.y < 0) ? 1 : 0;
|
||||
ray.dirIsNeg[2] = (ray.invDir.z < 0) ? 1 : 0;
|
||||
}
|
||||
|
||||
|
||||
static inline bool BBoxIntersect(const float bounds[2][3],
|
||||
const Ray &ray) {
|
||||
float3 bounds0(bounds[0][0], bounds[0][1], bounds[0][2]);
|
||||
float3 bounds1(bounds[1][0], bounds[1][1], bounds[1][2]);
|
||||
float t0 = ray.mint, t1 = ray.maxt;
|
||||
|
||||
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
|
||||
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
|
||||
if (tNear.x > tFar.x) {
|
||||
float tmp = tNear.x;
|
||||
tNear.x = tFar.x;
|
||||
tFar.x = tmp;
|
||||
}
|
||||
t0 = std::max(tNear.x, t0);
|
||||
t1 = std::min(tFar.x, t1);
|
||||
|
||||
if (tNear.y > tFar.y) {
|
||||
float tmp = tNear.y;
|
||||
tNear.y = tFar.y;
|
||||
tFar.y = tmp;
|
||||
}
|
||||
t0 = std::max(tNear.y, t0);
|
||||
t1 = std::min(tFar.y, t1);
|
||||
|
||||
if (tNear.z > tFar.z) {
|
||||
float tmp = tNear.z;
|
||||
tNear.z = tFar.z;
|
||||
tFar.z = tmp;
|
||||
}
|
||||
t0 = std::max(tNear.z, t0);
|
||||
t1 = std::min(tFar.z, t1);
|
||||
|
||||
return (t0 <= t1);
|
||||
}
|
||||
|
||||
|
||||
|
||||
inline bool TriIntersect(const Triangle &tri, Ray &ray) {
|
||||
float3 p0(tri.p[0][0], tri.p[0][1], tri.p[0][2]);
|
||||
float3 p1(tri.p[1][0], tri.p[1][1], tri.p[1][2]);
|
||||
float3 p2(tri.p[2][0], tri.p[2][1], tri.p[2][2]);
|
||||
float3 e1 = p1 - p0;
|
||||
float3 e2 = p2 - p0;
|
||||
|
||||
float3 s1 = Cross(ray.dir, e2);
|
||||
float divisor = Dot(s1, e1);
|
||||
|
||||
if (divisor == 0.)
|
||||
return false;
|
||||
float invDivisor = 1.f / divisor;
|
||||
|
||||
// Compute first barycentric coordinate
|
||||
float3 d = ray.origin - p0;
|
||||
float b1 = Dot(d, s1) * invDivisor;
|
||||
if (b1 < 0. || b1 > 1.)
|
||||
return false;
|
||||
|
||||
// Compute second barycentric coordinate
|
||||
float3 s2 = Cross(d, e1);
|
||||
float b2 = Dot(ray.dir, s2) * invDivisor;
|
||||
if (b2 < 0. || b1 + b2 > 1.)
|
||||
return false;
|
||||
|
||||
// Compute _t_ to intersection point
|
||||
float t = Dot(e2, s2) * invDivisor;
|
||||
if (t < ray.mint || t > ray.maxt)
|
||||
return false;
|
||||
|
||||
ray.maxt = t;
|
||||
ray.hitId = tri.id;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
|
||||
Ray &r) {
|
||||
Ray ray = r;
|
||||
bool hit = false;
|
||||
// Follow ray through BVH nodes to find primitive intersections
|
||||
int todoOffset = 0, nodeNum = 0;
|
||||
int todo[64];
|
||||
|
||||
while (true) {
|
||||
// Check ray against BVH node
|
||||
const LinearBVHNode &node = nodes[nodeNum];
|
||||
if (BBoxIntersect(node.bounds, ray)) {
|
||||
unsigned int nPrimitives = node.nPrimitives;
|
||||
if (nPrimitives > 0) {
|
||||
// Intersect ray with primitives in leaf BVH node
|
||||
unsigned int primitivesOffset = node.offset;
|
||||
for (unsigned int i = 0; i < nPrimitives; ++i) {
|
||||
if (TriIntersect(tris[primitivesOffset+i], ray))
|
||||
hit = true;
|
||||
}
|
||||
if (todoOffset == 0)
|
||||
break;
|
||||
nodeNum = todo[--todoOffset];
|
||||
}
|
||||
else {
|
||||
// Put far BVH node on _todo_ stack, advance to near node
|
||||
if (r.dirIsNeg[node.splitAxis]) {
|
||||
todo[todoOffset++] = nodeNum + 1;
|
||||
nodeNum = node.offset;
|
||||
}
|
||||
else {
|
||||
todo[todoOffset++] = node.offset;
|
||||
nodeNum = nodeNum + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (todoOffset == 0)
|
||||
break;
|
||||
nodeNum = todo[--todoOffset];
|
||||
}
|
||||
}
|
||||
r.maxt = ray.maxt;
|
||||
r.hitId = ray.hitId;
|
||||
|
||||
return hit;
|
||||
}
|
||||
|
||||
|
||||
void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
|
||||
const float raster2camera[4][4],
|
||||
const float camera2world[4][4],
|
||||
float image[],
|
||||
int id[],
|
||||
const LinearBVHNode nodes[],
|
||||
const Triangle triangles[]) {
|
||||
float widthScale = float(baseWidth) / float(width);
|
||||
float heightScale = float(baseHeight) / float(height);
|
||||
|
||||
for (int y = 0; y < height; ++y) {
|
||||
for (int x = 0; x < width; ++x) {
|
||||
Ray ray;
|
||||
generateRay(raster2camera, camera2world, x * widthScale,
|
||||
y * heightScale, ray);
|
||||
BVHIntersect(nodes, triangles, ray);
|
||||
|
||||
int offset = y * width + x;
|
||||
image[offset] = ray.maxt;
|
||||
id[offset] = ray.hitId;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user