+added Makefile and some fixes

This commit is contained in:
Evghenii
2013-11-13 14:16:48 +01:00
parent dededd1929
commit c0c1cc1ba7
9 changed files with 596 additions and 117 deletions

View File

@@ -0,0 +1,53 @@
PROG=mandel_cu
ISPC_SRC=mandelbrot_tasks3d.ispc
CXX_SRC=mandel_cu.cpp mandelbrot_tasks_serial.cpp
CXX=g++
CXXFLAGS=-O3 -I$(CUDATK)/include
LD=g++
LDFLAGS=-lcuda
ISPC=ispc
ISPCFLAGS=-O3 --math-lib=default --target=nvptx64,avx
LLVM32 = $(HOME)/usr/local/llvm/bin-3.2
LLVM = $(HOME)/usr/local/llvm/bin-3.3
PTXGEN = $(HOME)/ptxgen
LLVM32DIS=$(LLVM32)/bin/llvm-dis
.SUFFIXES: .bc .o .ptx .cu _ispc_nvptx64.bc
ISPC_OBJ=$(ISPC_SRC:%.ispc=%_ispc.o)
ISPC_BC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.bc)
PTXSRC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.ptx)
CXX_OBJ=$(CXX_SRC:%.cpp=%.o)
all: $(PROG)
$(CXX_OBJ) : kernel.ptx
$(PROG): $(CXX_OBJ) kernel.ptx
/bin/cp kernel.ptx __kernels.ptx
$(LD) -o $@ $(CXX_OBJ) $(LDFLAGS)
%.o: %.cpp
$(CXX) $(CXXFLAGS) -o $@ -c $<
%_ispc_nvptx64.bc: %.ispc
$(ISPC) $(ISPCFLAGS) --emit-llvm -o `basename $< .ispc`_ispc.bc -h `basename $< .ispc`_ispc.h $< --emit-llvm
%.ptx: %.bc
$(LLVM32DIS) $<
$(PTXGEN) `basename $< .bc`.ll > $@
kernel.ptx: $(PTXSRC)
cat $^ > kernel.ptx
clean:
/bin/rm -rf *.ptx *.bc *.ll $(PROG)

View File

@@ -0,0 +1,370 @@
/*
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
*
* Please refer to the NVIDIA end user license agreement (EULA) associated
* with this source code for terms and conditions that govern your use of
* this software. Any use, reproduction, disclosure, or distribution of
* this software and related documentation outside the terms of the EULA
* is strictly prohibited.
*
*/
#ifndef _DRVAPI_ERROR_STRING_H_
#define _DRVAPI_ERROR_STRING_H_
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
// Error Code string definitions here
typedef struct
{
char const *error_string;
int error_id;
} s_CudaErrorStr;
/**
* Error codes
*/
static s_CudaErrorStr sCudaDrvErrorString[] =
{
/**
* The API call returned with no errors. In the case of query calls, this
* can also mean that the operation being queried is complete (see
* ::cuEventQuery() and ::cuStreamQuery()).
*/
{ "CUDA_SUCCESS", 0 },
/**
* This indicates that one or more of the parameters passed to the API call
* is not within an acceptable range of values.
*/
{ "CUDA_ERROR_INVALID_VALUE", 1 },
/**
* The API call failed because it was unable to allocate enough memory to
* perform the requested operation.
*/
{ "CUDA_ERROR_OUT_OF_MEMORY", 2 },
/**
* This indicates that the CUDA driver has not been initialized with
* ::cuInit() or that initialization has failed.
*/
{ "CUDA_ERROR_NOT_INITIALIZED", 3 },
/**
* This indicates that the CUDA driver is in the process of shutting down.
*/
{ "CUDA_ERROR_DEINITIALIZED", 4 },
/**
* This indicates profiling APIs are called while application is running
* in visual profiler mode.
*/
{ "CUDA_ERROR_PROFILER_DISABLED", 5 },
/**
* This indicates profiling has not been initialized for this context.
* Call cuProfilerInitialize() to resolve this.
*/
{ "CUDA_ERROR_PROFILER_NOT_INITIALIZED", 6 },
/**
* This indicates profiler has already been started and probably
* cuProfilerStart() is incorrectly called.
*/
{ "CUDA_ERROR_PROFILER_ALREADY_STARTED", 7 },
/**
* This indicates profiler has already been stopped and probably
* cuProfilerStop() is incorrectly called.
*/
{ "CUDA_ERROR_PROFILER_ALREADY_STOPPED", 8 },
/**
* This indicates that no CUDA-capable devices were detected by the installed
* CUDA driver.
*/
{ "CUDA_ERROR_NO_DEVICE (no CUDA-capable devices were detected)", 100 },
/**
* This indicates that the device ordinal supplied by the user does not
* correspond to a valid CUDA device.
*/
{ "CUDA_ERROR_INVALID_DEVICE (device specified is not a valid CUDA device)", 101 },
/**
* This indicates that the device kernel image is invalid. This can also
* indicate an invalid CUDA module.
*/
{ "CUDA_ERROR_INVALID_IMAGE", 200 },
/**
* This most frequently indicates that there is no context bound to the
* current thread. This can also be returned if the context passed to an
* API call is not a valid handle (such as a context that has had
* ::cuCtxDestroy() invoked on it). This can also be returned if a user
* mixes different API versions (i.e. 3010 context with 3020 API calls).
* See ::cuCtxGetApiVersion() for more details.
*/
{ "CUDA_ERROR_INVALID_CONTEXT", 201 },
/**
* This indicated that the context being supplied as a parameter to the
* API call was already the active context.
* \deprecated
* This error return is deprecated as of CUDA 3.2. It is no longer an
* error to attempt to push the active context via ::cuCtxPushCurrent().
*/
{ "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", 202 },
/**
* This indicates that a map or register operation has failed.
*/
{ "CUDA_ERROR_MAP_FAILED", 205 },
/**
* This indicates that an unmap or unregister operation has failed.
*/
{ "CUDA_ERROR_UNMAP_FAILED", 206 },
/**
* This indicates that the specified array is currently mapped and thus
* cannot be destroyed.
*/
{ "CUDA_ERROR_ARRAY_IS_MAPPED", 207 },
/**
* This indicates that the resource is already mapped.
*/
{ "CUDA_ERROR_ALREADY_MAPPED", 208 },
/**
* This indicates that there is no kernel image available that is suitable
* for the device. This can occur when a user specifies code generation
* options for a particular CUDA source file that do not include the
* corresponding device configuration.
*/
{ "CUDA_ERROR_NO_BINARY_FOR_GPU", 209 },
/**
* This indicates that a resource has already been acquired.
*/
{ "CUDA_ERROR_ALREADY_ACQUIRED", 210 },
/**
* This indicates that a resource is not mapped.
*/
{ "CUDA_ERROR_NOT_MAPPED", 211 },
/**
* This indicates that a mapped resource is not available for access as an
* array.
*/
{ "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", 212 },
/**
* This indicates that a mapped resource is not available for access as a
* pointer.
*/
{ "CUDA_ERROR_NOT_MAPPED_AS_POINTER", 213 },
/**
* This indicates that an uncorrectable ECC error was detected during
* execution.
*/
{ "CUDA_ERROR_ECC_UNCORRECTABLE", 214 },
/**
* This indicates that the ::CUlimit passed to the API call is not
* supported by the active device.
*/
{ "CUDA_ERROR_UNSUPPORTED_LIMIT", 215 },
/**
* This indicates that the ::CUcontext passed to the API call can
* only be bound to a single CPU thread at a time but is already
* bound to a CPU thread.
*/
{ "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", 216 },
/**
* This indicates that peer access is not supported across the given
* devices.
*/
{ "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", 217},
/**
* This indicates that the device kernel source is invalid.
*/
{ "CUDA_ERROR_INVALID_SOURCE", 300 },
/**
* This indicates that the file specified was not found.
*/
{ "CUDA_ERROR_FILE_NOT_FOUND", 301 },
/**
* This indicates that a link to a shared object failed to resolve.
*/
{ "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", 302 },
/**
* This indicates that initialization of a shared object failed.
*/
{ "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", 303 },
/**
* This indicates that an OS call failed.
*/
{ "CUDA_ERROR_OPERATING_SYSTEM", 304 },
/**
* This indicates that a resource handle passed to the API call was not
* valid. Resource handles are opaque types like ::CUstream and ::CUevent.
*/
{ "CUDA_ERROR_INVALID_HANDLE", 400 },
/**
* This indicates that a named symbol was not found. Examples of symbols
* are global/constant variable names, texture names }, and surface names.
*/
{ "CUDA_ERROR_NOT_FOUND", 500 },
/**
* This indicates that asynchronous operations issued previously have not
* completed yet. This result is not actually an error, but must be indicated
* differently than ::CUDA_SUCCESS (which indicates completion). Calls that
* may return this value include ::cuEventQuery() and ::cuStreamQuery().
*/
{ "CUDA_ERROR_NOT_READY", 600 },
/**
* An exception occurred on the device while executing a kernel. Common
* causes include dereferencing an invalid device pointer and accessing
* out of bounds shared memory. The context cannot be used }, so it must
* be destroyed (and a new one should be created). All existing device
* memory allocations from this context are invalid and must be
* reconstructed if the program is to continue using CUDA.
*/
{ "CUDA_ERROR_LAUNCH_FAILED", 700 },
/**
* This indicates that a launch did not occur because it did not have
* appropriate resources. This error usually indicates that the user has
* attempted to pass too many arguments to the device kernel, or the
* kernel launch specifies too many threads for the kernel's register
* count. Passing arguments of the wrong size (i.e. a 64-bit pointer
* when a 32-bit int is expected) is equivalent to passing too many
* arguments and can also result in this error.
*/
{ "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", 701 },
/**
* This indicates that the device kernel took too long to execute. This can
* only occur if timeouts are enabled - see the device attribute
* ::CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The
* context cannot be used (and must be destroyed similar to
* ::CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from
* this context are invalid and must be reconstructed if the program is to
* continue using CUDA.
*/
{ "CUDA_ERROR_LAUNCH_TIMEOUT", 702 },
/**
* This error indicates a kernel launch that uses an incompatible texturing
* mode.
*/
{ "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", 703 },
/**
* This error indicates that a call to ::cuCtxEnablePeerAccess() is
* trying to re-enable peer access to a context which has already
* had peer access to it enabled.
*/
{ "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", 704 },
/**
* This error indicates that ::cuCtxDisablePeerAccess() is
* trying to disable peer access which has not been enabled yet
* via ::cuCtxEnablePeerAccess().
*/
{ "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", 705 },
/**
* This error indicates that the primary context for the specified device
* has already been initialized.
*/
{ "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", 708 },
/**
* This error indicates that the context current to the calling thread
* has been destroyed using ::cuCtxDestroy }, or is a primary context which
* has not yet been initialized.
*/
{ "CUDA_ERROR_CONTEXT_IS_DESTROYED", 709 },
/**
* A device-side assert triggered during kernel execution. The context
* cannot be used anymore, and must be destroyed. All existing device
* memory allocations from this context are invalid and must be
* reconstructed if the program is to continue using CUDA.
*/
{ "CUDA_ERROR_ASSERT", 710 },
/**
* This error indicates that the hardware resources required to enable
* peer access have been exhausted for one or more of the devices
* passed to ::cuCtxEnablePeerAccess().
*/
{ "CUDA_ERROR_TOO_MANY_PEERS", 711 },
/**
* This error indicates that the memory range passed to ::cuMemHostRegister()
* has already been registered.
*/
{ "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", 712 },
/**
* This error indicates that the pointer passed to ::cuMemHostUnregister()
* does not correspond to any currently registered memory region.
*/
{ "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", 713 },
/**
* This error indicates that the attempted operation is not permitted.
*/
{ "CUDA_ERROR_NOT_PERMITTED", 800 },
/**
* This error indicates that the attempted operation is not supported
* on the current system or device.
*/
{ "CUDA_ERROR_NOT_SUPPORTED", 801 },
/**
* This indicates that an unknown internal error has occurred.
*/
{ "CUDA_ERROR_UNKNOWN", 999 },
{ NULL, -1 }
};
// This is just a linear search through the array, since the error_id's are not
// always ocurring consecutively
const char * getCudaDrvErrorString(CUresult error_id)
{
int index = 0;
while (sCudaDrvErrorString[index].error_id != error_id &&
sCudaDrvErrorString[index].error_id != -1)
{
index++;
}
if (sCudaDrvErrorString[index].error_id == error_id)
return (const char *)sCudaDrvErrorString[index].error_string;
else
return (const char *)"CUDA_ERROR not found!";
}
#endif

View File

@@ -44,8 +44,6 @@
#include "../timing.h"
#include <sys/time.h>
double rtc(void)
{
struct timeval Tvalue;
@@ -74,12 +72,6 @@ void __checkCudaErrors(CUresult err, const char *file, const int line) {
exit(-1);
}
}
extern "C"
void mandelbrot_ispc(
float x0, float y0,
float x1, float y1,
int width, int height,
int maxIterations, int output[]) ;
/**********************/
@@ -118,8 +110,120 @@ void destroyContext()
CUmodule loadModule(const char * module)
{
const double t0 = rtc();
CUmodule cudaModule;
checkCudaErrors(cuModuleLoadData(&cudaModule, module));
// in this branch we use compilation with parameters
#if 0
unsigned int jitNumOptions = 1;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void*[jitNumOptions];
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[0] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 64;
jitOptVals[0] = (void *)(size_t)jitRegCount;
#if 0
{
jitNumOptions = 3;
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
}
#endif
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
#else
CUlinkState CUState;
CUlinkState *lState = &CUState;
const int nOptions = 7;
CUjit_option options[nOptions];
void* optionVals[nOptions];
float walltime;
const unsigned int logSize = 32768;
char error_log[logSize],
info_log[logSize];
void *cuOut;
size_t outSize;
int myErr = 0;
// Setup linker options
// Return walltime from JIT compilation
options[0] = CU_JIT_WALL_TIME;
optionVals[0] = (void*) &walltime;
// Pass a buffer for info messages
options[1] = CU_JIT_INFO_LOG_BUFFER;
optionVals[1] = (void*) info_log;
// Pass the size of the info buffer
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
optionVals[2] = (void*) logSize;
// Pass a buffer for error message
options[3] = CU_JIT_ERROR_LOG_BUFFER;
optionVals[3] = (void*) error_log;
// Pass the size of the error buffer
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
optionVals[4] = (void*) logSize;
// Make the linker verbose
options[5] = CU_JIT_LOG_VERBOSE;
optionVals[5] = (void*) 1;
// Max # of registers/pthread
options[6] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 48;
optionVals[6] = (void *)(size_t)jitRegCount;
// Create a pending linker invocation
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
#if 0
if (sizeof(void *)==4)
{
// Load the PTX from the string myPtx32
printf("Loading myPtx32[] program\n");
// PTX May also be loaded from file, as per below.
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
}
else
#endif
{
// Load the PTX from the string myPtx (64-bit)
fprintf(stderr, "Loading ptx..\n");
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
// PTX May also be loaded from file, as per below.
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
}
// Complete the linker step
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
if ( myErr != CUDA_SUCCESS )
{
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
assert(0);
}
// Linker walltime and info_log were requested in options above.
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
// Load resulting cuBin into module
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
// Destroy the linker invocation
checkCudaErrors(cuLinkDestroy(*lState));
#endif
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
@@ -152,12 +256,13 @@ void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,nbx,nby,nbz,params) \
#define deviceLaunch(func,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
((nbx-1)/(128/32)+1), (nby), (nbz), \
128, 1, 1, \
1,1,1, \
32, 1, 1, \
0, NULL, (params), NULL \
));
@@ -200,104 +305,23 @@ std::vector<char> readBinary(const char * filename)
extern "C"
{
#if 0
struct ModuleManager
{
private:
typedef std::pair<std::string, CUModule> ModulePair;
typedef std::map <std::string, CUModule> ModuleMap;
ModuleMap module_list;
ModuleMap::iterator findModule(const char * module_name)
{
return module_list.find(std::string(module_name));
}
public:
CUmodule loadModule(const char * module_name, const char * module_data)
{
const ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
{
CUmodule cudaModule = loadModule(module);
module_list.insert(std::make_pair(std::string(module_name), cudaModule));
return cudaModule
}
return it->second;
}
void unloadModule(const char * module_name)
{
ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
module_list.erase(it);
}
};
#endif
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
{
#if 0
fprintf(stderr, " ptr= %p\n", *handlePtr);
fprintf(stderr, " size= %d\n", (int)size);
fprintf(stderr, " alignment= %d\n", (int)alignment);
fprintf(stderr, " ------- \n\n");
#endif
return NULL;
}
void CUDALaunch(
double CUDALaunch(
void **handlePtr,
const char * module_name,
const char * module_1,
const char * func_name,
void **func_args,
int countx, int county, int countz)
void **func_args)
{
assert(module_name != NULL);
assert(module_1 != NULL);
assert(func_name != NULL);
assert(func_args != NULL);
#if 1
const char * module = module_1;
#else
const std::vector<char> module_str = readBinary("kernel.cubin");
const std::vector<char> module_str = readBinary("__kernels.ptx");
const char * module = &module_str[0];
#endif
#if 1
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args);
unloadModule(cudaModule);
#else
fprintf(stderr, " handle= %p\n", *handlePtr);
fprintf(stderr, " count= %d %d %d\n", countx, county, countz);
fprintf(stderr, " module_name= %s \n", module_name);
fprintf(stderr, " func_name= %s \n", func_name);
// fprintf(stderr, " ptx= %s \n", module);
fprintf(stderr, " x0= %g \n", *((float*)(func_args[0])));
fprintf(stderr, " dx= %g \n", *((float*)(func_args[1])));
fprintf(stderr, " y0= %g \n", *((float*)(func_args[2])));
fprintf(stderr, " dy= %g \n", *((float*)(func_args[3])));
fprintf(stderr, " w= %d \n", *((int*)(func_args[4])));
fprintf(stderr, " h= %d \n", *((int*)(func_args[5])));
fprintf(stderr, " xs= %d \n", *((int*)(func_args[6])));
fprintf(stderr, " ys= %d \n", *((int*)(func_args[7])));
fprintf(stderr, " maxit= %d \n", *((int*)(func_args[8])));
fprintf(stderr, " ptr= %p \n", *((int**)(func_args[9])));
fprintf(stderr, " ------- \n\n");
#endif
}
void CUDASync(void *handle)
{
const double t0 = rtc();
deviceLaunch(cudaFunction, func_args);
checkCudaErrors(cuStreamSynchronize(0));
const double dt = rtc() - t0;
unloadModule(cudaModule);
return dt;
}
void ISPCSync(void *handle)
{
}
void CUDAFree(void *handle)
{
}
}
/********************/
@@ -382,9 +406,15 @@ int main(int argc, char *argv[]) {
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
#if 0
const double t0 = rtc();
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, (int*)d_buf);
double dt = rtc() - t0; //get_elapsed_mcycles();
#else
const char * func_name = "mandelbrot_ispc";
void *func_args[] = {&x0, &y0, &x1, &y1, &width, &height, &maxIterations, &d_buf};
const double dt = CUDALaunch(NULL, func_name, func_args);
#endif
minISPC = std::min(minISPC, dt);
}
#endif

View File

@@ -42,8 +42,20 @@
#include <algorithm>
#include <string.h>
#include "../timing.h"
#include "mandelbrot_ispc.h"
#include "mandelbrot_tasks3d_ispc.h"
using namespace ispc;
#include <sys/time.h>
double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
extern void mandelbrot_serial(float x0, float y0, float x1, float y1,
int width, int height, int maxIterations,
@@ -113,8 +125,9 @@ int main(int argc, char *argv[]) {
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
const double t0 = rtc();
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, buf);
double dt = get_elapsed_mcycles();
double dt = rtc() - t0; //get_elapsed_mcycles();
minISPC = std::min(minISPC, dt);
}

View File

@@ -31,12 +31,21 @@
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef __NVPTX__
#define taskIndex0 blockIndex0()
#define taskIndex1 blockIndex1()
#define taskCount0 blockCount0()
#define taskCount1 blockCount1()
#define programCount warpSize()
#define programIndex laneIndex()
#endif
static inline int
mandel(float c_re, float c_im, int count) {
float z_re = c_re, z_im = c_im;
int i;
for (i = 0; i < count; ++i) {
if (z_re * z_re + z_im * z_im > 4.)
if (z_re * z_re + z_im * z_im > 4.0f)
break;
float new_re = z_re*z_re - z_im*z_im;
@@ -65,13 +74,16 @@ mandelbrot_scanline(uniform float x0, uniform float dx,
const uniform int ystart = taskIndex1 * yspan;
const uniform int yend = min(ystart + yspan, height);
for (uniform int yi = ystart; yi < yend; yi++)
for (uniform int xi = xstart; xi < xend; xi += programCount)
{
const float x = x0 + (xi + programIndex) * dx;
const float y = y0 + yi * dy;
foreach (yi = ystart ... yend, xi = xstart ... xend) {
float x = x0 + xi * dx;
float y = y0 + yi * dy;
int index = yi * width + xi;
output[index] = mandel(x, y, maxIterations);
const int res = mandel(x,y,maxIterations);
const int index = yi * width + (xi + programIndex);
if (xi + programIndex < xend)
output[index] = res;
}
}
@@ -84,8 +96,8 @@ mandelbrot_ispc(uniform float x0, uniform float y0,
uniform int maxIterations, uniform int output[]) {
uniform float dx = (x1 - x0) / width;
uniform float dy = (y1 - y0) / height;
const uniform int xspan = 16; /* make sure it is big enough to avoid false-sharing */
const uniform int yspan = 16;
const uniform int xspan = 32; /* make sure it is big enough to avoid false-sharing */
const uniform int yspan = 4;
#if 1