+added Makefile and some fixes
This commit is contained in:
53
examples_cuda/mandelbrot_tasks3d/Makefile_gpu
Normal file
53
examples_cuda/mandelbrot_tasks3d/Makefile_gpu
Normal file
@@ -0,0 +1,53 @@
|
||||
PROG=mandel_cu
|
||||
ISPC_SRC=mandelbrot_tasks3d.ispc
|
||||
CXX_SRC=mandel_cu.cpp mandelbrot_tasks_serial.cpp
|
||||
|
||||
CXX=g++
|
||||
CXXFLAGS=-O3 -I$(CUDATK)/include
|
||||
LD=g++
|
||||
LDFLAGS=-lcuda
|
||||
|
||||
ISPC=ispc
|
||||
ISPCFLAGS=-O3 --math-lib=default --target=nvptx64,avx
|
||||
|
||||
LLVM32 = $(HOME)/usr/local/llvm/bin-3.2
|
||||
LLVM = $(HOME)/usr/local/llvm/bin-3.3
|
||||
PTXGEN = $(HOME)/ptxgen
|
||||
|
||||
LLVM32DIS=$(LLVM32)/bin/llvm-dis
|
||||
|
||||
.SUFFIXES: .bc .o .ptx .cu _ispc_nvptx64.bc
|
||||
|
||||
|
||||
ISPC_OBJ=$(ISPC_SRC:%.ispc=%_ispc.o)
|
||||
ISPC_BC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.bc)
|
||||
PTXSRC=$(ISPC_SRC:%.ispc=%_ispc_nvptx64.ptx)
|
||||
CXX_OBJ=$(CXX_SRC:%.cpp=%.o)
|
||||
|
||||
all: $(PROG)
|
||||
|
||||
|
||||
$(CXX_OBJ) : kernel.ptx
|
||||
$(PROG): $(CXX_OBJ) kernel.ptx
|
||||
/bin/cp kernel.ptx __kernels.ptx
|
||||
$(LD) -o $@ $(CXX_OBJ) $(LDFLAGS)
|
||||
|
||||
%.o: %.cpp
|
||||
$(CXX) $(CXXFLAGS) -o $@ -c $<
|
||||
|
||||
|
||||
%_ispc_nvptx64.bc: %.ispc
|
||||
$(ISPC) $(ISPCFLAGS) --emit-llvm -o `basename $< .ispc`_ispc.bc -h `basename $< .ispc`_ispc.h $< --emit-llvm
|
||||
|
||||
%.ptx: %.bc
|
||||
$(LLVM32DIS) $<
|
||||
$(PTXGEN) `basename $< .bc`.ll > $@
|
||||
|
||||
kernel.ptx: $(PTXSRC)
|
||||
cat $^ > kernel.ptx
|
||||
|
||||
clean:
|
||||
/bin/rm -rf *.ptx *.bc *.ll $(PROG)
|
||||
|
||||
|
||||
|
||||
370
examples_cuda/mandelbrot_tasks3d/drvapi_error_string.h
Normal file
370
examples_cuda/mandelbrot_tasks3d/drvapi_error_string.h
Normal file
@@ -0,0 +1,370 @@
|
||||
/*
|
||||
* Copyright 1993-2012 NVIDIA Corporation. All rights reserved.
|
||||
*
|
||||
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||||
* with this source code for terms and conditions that govern your use of
|
||||
* this software. Any use, reproduction, disclosure, or distribution of
|
||||
* this software and related documentation outside the terms of the EULA
|
||||
* is strictly prohibited.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _DRVAPI_ERROR_STRING_H_
|
||||
#define _DRVAPI_ERROR_STRING_H_
|
||||
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
// Error Code string definitions here
|
||||
typedef struct
|
||||
{
|
||||
char const *error_string;
|
||||
int error_id;
|
||||
} s_CudaErrorStr;
|
||||
|
||||
/**
|
||||
* Error codes
|
||||
*/
|
||||
static s_CudaErrorStr sCudaDrvErrorString[] =
|
||||
{
|
||||
/**
|
||||
* The API call returned with no errors. In the case of query calls, this
|
||||
* can also mean that the operation being queried is complete (see
|
||||
* ::cuEventQuery() and ::cuStreamQuery()).
|
||||
*/
|
||||
{ "CUDA_SUCCESS", 0 },
|
||||
|
||||
/**
|
||||
* This indicates that one or more of the parameters passed to the API call
|
||||
* is not within an acceptable range of values.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_VALUE", 1 },
|
||||
|
||||
/**
|
||||
* The API call failed because it was unable to allocate enough memory to
|
||||
* perform the requested operation.
|
||||
*/
|
||||
{ "CUDA_ERROR_OUT_OF_MEMORY", 2 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver has not been initialized with
|
||||
* ::cuInit() or that initialization has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_INITIALIZED", 3 },
|
||||
|
||||
/**
|
||||
* This indicates that the CUDA driver is in the process of shutting down.
|
||||
*/
|
||||
{ "CUDA_ERROR_DEINITIALIZED", 4 },
|
||||
|
||||
/**
|
||||
* This indicates profiling APIs are called while application is running
|
||||
* in visual profiler mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_DISABLED", 5 },
|
||||
/**
|
||||
* This indicates profiling has not been initialized for this context.
|
||||
* Call cuProfilerInitialize() to resolve this.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_NOT_INITIALIZED", 6 },
|
||||
/**
|
||||
* This indicates profiler has already been started and probably
|
||||
* cuProfilerStart() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STARTED", 7 },
|
||||
/**
|
||||
* This indicates profiler has already been stopped and probably
|
||||
* cuProfilerStop() is incorrectly called.
|
||||
*/
|
||||
{ "CUDA_ERROR_PROFILER_ALREADY_STOPPED", 8 },
|
||||
/**
|
||||
* This indicates that no CUDA-capable devices were detected by the installed
|
||||
* CUDA driver.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_DEVICE (no CUDA-capable devices were detected)", 100 },
|
||||
|
||||
/**
|
||||
* This indicates that the device ordinal supplied by the user does not
|
||||
* correspond to a valid CUDA device.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_DEVICE (device specified is not a valid CUDA device)", 101 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel image is invalid. This can also
|
||||
* indicate an invalid CUDA module.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_IMAGE", 200 },
|
||||
|
||||
/**
|
||||
* This most frequently indicates that there is no context bound to the
|
||||
* current thread. This can also be returned if the context passed to an
|
||||
* API call is not a valid handle (such as a context that has had
|
||||
* ::cuCtxDestroy() invoked on it). This can also be returned if a user
|
||||
* mixes different API versions (i.e. 3010 context with 3020 API calls).
|
||||
* See ::cuCtxGetApiVersion() for more details.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_CONTEXT", 201 },
|
||||
|
||||
/**
|
||||
* This indicated that the context being supplied as a parameter to the
|
||||
* API call was already the active context.
|
||||
* \deprecated
|
||||
* This error return is deprecated as of CUDA 3.2. It is no longer an
|
||||
* error to attempt to push the active context via ::cuCtxPushCurrent().
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_CURRENT", 202 },
|
||||
|
||||
/**
|
||||
* This indicates that a map or register operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_MAP_FAILED", 205 },
|
||||
|
||||
/**
|
||||
* This indicates that an unmap or unregister operation has failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNMAP_FAILED", 206 },
|
||||
|
||||
/**
|
||||
* This indicates that the specified array is currently mapped and thus
|
||||
* cannot be destroyed.
|
||||
*/
|
||||
{ "CUDA_ERROR_ARRAY_IS_MAPPED", 207 },
|
||||
|
||||
/**
|
||||
* This indicates that the resource is already mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_MAPPED", 208 },
|
||||
|
||||
/**
|
||||
* This indicates that there is no kernel image available that is suitable
|
||||
* for the device. This can occur when a user specifies code generation
|
||||
* options for a particular CUDA source file that do not include the
|
||||
* corresponding device configuration.
|
||||
*/
|
||||
{ "CUDA_ERROR_NO_BINARY_FOR_GPU", 209 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource has already been acquired.
|
||||
*/
|
||||
{ "CUDA_ERROR_ALREADY_ACQUIRED", 210 },
|
||||
|
||||
/**
|
||||
* This indicates that a resource is not mapped.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED", 211 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as an
|
||||
* array.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_ARRAY", 212 },
|
||||
|
||||
/**
|
||||
* This indicates that a mapped resource is not available for access as a
|
||||
* pointer.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_MAPPED_AS_POINTER", 213 },
|
||||
|
||||
/**
|
||||
* This indicates that an uncorrectable ECC error was detected during
|
||||
* execution.
|
||||
*/
|
||||
{ "CUDA_ERROR_ECC_UNCORRECTABLE", 214 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUlimit passed to the API call is not
|
||||
* supported by the active device.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNSUPPORTED_LIMIT", 215 },
|
||||
|
||||
/**
|
||||
* This indicates that the ::CUcontext passed to the API call can
|
||||
* only be bound to a single CPU thread at a time but is already
|
||||
* bound to a CPU thread.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_ALREADY_IN_USE", 216 },
|
||||
|
||||
/**
|
||||
* This indicates that peer access is not supported across the given
|
||||
* devices.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_UNSUPPORTED", 217},
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel source is invalid.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_SOURCE", 300 },
|
||||
|
||||
/**
|
||||
* This indicates that the file specified was not found.
|
||||
*/
|
||||
{ "CUDA_ERROR_FILE_NOT_FOUND", 301 },
|
||||
|
||||
/**
|
||||
* This indicates that a link to a shared object failed to resolve.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_SYMBOL_NOT_FOUND", 302 },
|
||||
|
||||
/**
|
||||
* This indicates that initialization of a shared object failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_SHARED_OBJECT_INIT_FAILED", 303 },
|
||||
|
||||
/**
|
||||
* This indicates that an OS call failed.
|
||||
*/
|
||||
{ "CUDA_ERROR_OPERATING_SYSTEM", 304 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a resource handle passed to the API call was not
|
||||
* valid. Resource handles are opaque types like ::CUstream and ::CUevent.
|
||||
*/
|
||||
{ "CUDA_ERROR_INVALID_HANDLE", 400 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that a named symbol was not found. Examples of symbols
|
||||
* are global/constant variable names, texture names }, and surface names.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_FOUND", 500 },
|
||||
|
||||
|
||||
/**
|
||||
* This indicates that asynchronous operations issued previously have not
|
||||
* completed yet. This result is not actually an error, but must be indicated
|
||||
* differently than ::CUDA_SUCCESS (which indicates completion). Calls that
|
||||
* may return this value include ::cuEventQuery() and ::cuStreamQuery().
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_READY", 600 },
|
||||
|
||||
|
||||
/**
|
||||
* An exception occurred on the device while executing a kernel. Common
|
||||
* causes include dereferencing an invalid device pointer and accessing
|
||||
* out of bounds shared memory. The context cannot be used }, so it must
|
||||
* be destroyed (and a new one should be created). All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_FAILED", 700 },
|
||||
|
||||
/**
|
||||
* This indicates that a launch did not occur because it did not have
|
||||
* appropriate resources. This error usually indicates that the user has
|
||||
* attempted to pass too many arguments to the device kernel, or the
|
||||
* kernel launch specifies too many threads for the kernel's register
|
||||
* count. Passing arguments of the wrong size (i.e. a 64-bit pointer
|
||||
* when a 32-bit int is expected) is equivalent to passing too many
|
||||
* arguments and can also result in this error.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_OUT_OF_RESOURCES", 701 },
|
||||
|
||||
/**
|
||||
* This indicates that the device kernel took too long to execute. This can
|
||||
* only occur if timeouts are enabled - see the device attribute
|
||||
* ::CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT for more information. The
|
||||
* context cannot be used (and must be destroyed similar to
|
||||
* ::CUDA_ERROR_LAUNCH_FAILED). All existing device memory allocations from
|
||||
* this context are invalid and must be reconstructed if the program is to
|
||||
* continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_TIMEOUT", 702 },
|
||||
|
||||
/**
|
||||
* This error indicates a kernel launch that uses an incompatible texturing
|
||||
* mode.
|
||||
*/
|
||||
{ "CUDA_ERROR_LAUNCH_INCOMPATIBLE_TEXTURING", 703 },
|
||||
|
||||
/**
|
||||
* This error indicates that a call to ::cuCtxEnablePeerAccess() is
|
||||
* trying to re-enable peer access to a context which has already
|
||||
* had peer access to it enabled.
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_ALREADY_ENABLED", 704 },
|
||||
|
||||
/**
|
||||
* This error indicates that ::cuCtxDisablePeerAccess() is
|
||||
* trying to disable peer access which has not been enabled yet
|
||||
* via ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_PEER_ACCESS_NOT_ENABLED", 705 },
|
||||
|
||||
/**
|
||||
* This error indicates that the primary context for the specified device
|
||||
* has already been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_PRIMARY_CONTEXT_ACTIVE", 708 },
|
||||
|
||||
/**
|
||||
* This error indicates that the context current to the calling thread
|
||||
* has been destroyed using ::cuCtxDestroy }, or is a primary context which
|
||||
* has not yet been initialized.
|
||||
*/
|
||||
{ "CUDA_ERROR_CONTEXT_IS_DESTROYED", 709 },
|
||||
|
||||
/**
|
||||
* A device-side assert triggered during kernel execution. The context
|
||||
* cannot be used anymore, and must be destroyed. All existing device
|
||||
* memory allocations from this context are invalid and must be
|
||||
* reconstructed if the program is to continue using CUDA.
|
||||
*/
|
||||
{ "CUDA_ERROR_ASSERT", 710 },
|
||||
|
||||
/**
|
||||
* This error indicates that the hardware resources required to enable
|
||||
* peer access have been exhausted for one or more of the devices
|
||||
* passed to ::cuCtxEnablePeerAccess().
|
||||
*/
|
||||
{ "CUDA_ERROR_TOO_MANY_PEERS", 711 },
|
||||
|
||||
/**
|
||||
* This error indicates that the memory range passed to ::cuMemHostRegister()
|
||||
* has already been registered.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_ALREADY_REGISTERED", 712 },
|
||||
|
||||
/**
|
||||
* This error indicates that the pointer passed to ::cuMemHostUnregister()
|
||||
* does not correspond to any currently registered memory region.
|
||||
*/
|
||||
{ "CUDA_ERROR_HOST_MEMORY_NOT_REGISTERED", 713 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not permitted.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_PERMITTED", 800 },
|
||||
|
||||
/**
|
||||
* This error indicates that the attempted operation is not supported
|
||||
* on the current system or device.
|
||||
*/
|
||||
{ "CUDA_ERROR_NOT_SUPPORTED", 801 },
|
||||
|
||||
/**
|
||||
* This indicates that an unknown internal error has occurred.
|
||||
*/
|
||||
{ "CUDA_ERROR_UNKNOWN", 999 },
|
||||
{ NULL, -1 }
|
||||
};
|
||||
|
||||
// This is just a linear search through the array, since the error_id's are not
|
||||
// always ocurring consecutively
|
||||
const char * getCudaDrvErrorString(CUresult error_id)
|
||||
{
|
||||
int index = 0;
|
||||
while (sCudaDrvErrorString[index].error_id != error_id &&
|
||||
sCudaDrvErrorString[index].error_id != -1)
|
||||
{
|
||||
index++;
|
||||
}
|
||||
if (sCudaDrvErrorString[index].error_id == error_id)
|
||||
return (const char *)sCudaDrvErrorString[index].error_string;
|
||||
else
|
||||
return (const char *)"CUDA_ERROR not found!";
|
||||
}
|
||||
|
||||
#endif
|
||||
@@ -44,8 +44,6 @@
|
||||
#include "../timing.h"
|
||||
|
||||
#include <sys/time.h>
|
||||
|
||||
|
||||
double rtc(void)
|
||||
{
|
||||
struct timeval Tvalue;
|
||||
@@ -74,12 +72,6 @@ void __checkCudaErrors(CUresult err, const char *file, const int line) {
|
||||
exit(-1);
|
||||
}
|
||||
}
|
||||
extern "C"
|
||||
void mandelbrot_ispc(
|
||||
float x0, float y0,
|
||||
float x1, float y1,
|
||||
int width, int height,
|
||||
int maxIterations, int output[]) ;
|
||||
|
||||
|
||||
/**********************/
|
||||
@@ -118,8 +110,120 @@ void destroyContext()
|
||||
|
||||
CUmodule loadModule(const char * module)
|
||||
{
|
||||
const double t0 = rtc();
|
||||
CUmodule cudaModule;
|
||||
checkCudaErrors(cuModuleLoadData(&cudaModule, module));
|
||||
// in this branch we use compilation with parameters
|
||||
|
||||
#if 0
|
||||
unsigned int jitNumOptions = 1;
|
||||
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
|
||||
void **jitOptVals = new void*[jitNumOptions];
|
||||
// set up pointer to set the Maximum # of registers for a particular kernel
|
||||
jitOptions[0] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 64;
|
||||
jitOptVals[0] = (void *)(size_t)jitRegCount;
|
||||
#if 0
|
||||
|
||||
{
|
||||
jitNumOptions = 3;
|
||||
// set up size of compilation log buffer
|
||||
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
||||
int jitLogBufferSize = 1024;
|
||||
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
|
||||
|
||||
// set up pointer to the compilation log buffer
|
||||
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
|
||||
char *jitLogBuffer = new char[jitLogBufferSize];
|
||||
jitOptVals[1] = jitLogBuffer;
|
||||
|
||||
// set up pointer to set the Maximum # of registers for a particular kernel
|
||||
jitOptions[2] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 32;
|
||||
jitOptVals[2] = (void *)(size_t)jitRegCount;
|
||||
}
|
||||
#endif
|
||||
|
||||
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
|
||||
#else
|
||||
CUlinkState CUState;
|
||||
CUlinkState *lState = &CUState;
|
||||
const int nOptions = 7;
|
||||
CUjit_option options[nOptions];
|
||||
void* optionVals[nOptions];
|
||||
float walltime;
|
||||
const unsigned int logSize = 32768;
|
||||
char error_log[logSize],
|
||||
info_log[logSize];
|
||||
void *cuOut;
|
||||
size_t outSize;
|
||||
int myErr = 0;
|
||||
|
||||
// Setup linker options
|
||||
// Return walltime from JIT compilation
|
||||
options[0] = CU_JIT_WALL_TIME;
|
||||
optionVals[0] = (void*) &walltime;
|
||||
// Pass a buffer for info messages
|
||||
options[1] = CU_JIT_INFO_LOG_BUFFER;
|
||||
optionVals[1] = (void*) info_log;
|
||||
// Pass the size of the info buffer
|
||||
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
|
||||
optionVals[2] = (void*) logSize;
|
||||
// Pass a buffer for error message
|
||||
options[3] = CU_JIT_ERROR_LOG_BUFFER;
|
||||
optionVals[3] = (void*) error_log;
|
||||
// Pass the size of the error buffer
|
||||
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
|
||||
optionVals[4] = (void*) logSize;
|
||||
// Make the linker verbose
|
||||
options[5] = CU_JIT_LOG_VERBOSE;
|
||||
optionVals[5] = (void*) 1;
|
||||
// Max # of registers/pthread
|
||||
options[6] = CU_JIT_MAX_REGISTERS;
|
||||
int jitRegCount = 48;
|
||||
optionVals[6] = (void *)(size_t)jitRegCount;
|
||||
|
||||
// Create a pending linker invocation
|
||||
checkCudaErrors(cuLinkCreate(nOptions,options, optionVals, lState));
|
||||
|
||||
#if 0
|
||||
if (sizeof(void *)==4)
|
||||
{
|
||||
// Load the PTX from the string myPtx32
|
||||
printf("Loading myPtx32[] program\n");
|
||||
// PTX May also be loaded from file, as per below.
|
||||
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)myPtx32, strlen(myPtx32)+1, 0, 0, 0, 0);
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
// Load the PTX from the string myPtx (64-bit)
|
||||
fprintf(stderr, "Loading ptx..\n");
|
||||
myErr = cuLinkAddData(*lState, CU_JIT_INPUT_PTX, (void*)module, strlen(module)+1, 0, 0, 0, 0);
|
||||
myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_LIBRARY, "libcudadevrt.a", 0,0,0);
|
||||
// PTX May also be loaded from file, as per below.
|
||||
// myErr = cuLinkAddFile(*lState, CU_JIT_INPUT_PTX, "myPtx64.ptx",0,0,0);
|
||||
}
|
||||
|
||||
// Complete the linker step
|
||||
myErr = cuLinkComplete(*lState, &cuOut, &outSize);
|
||||
|
||||
if ( myErr != CUDA_SUCCESS )
|
||||
{
|
||||
// Errors will be put in error_log, per CU_JIT_ERROR_LOG_BUFFER option above.
|
||||
fprintf(stderr,"PTX Linker Error:\n%s\n",error_log);
|
||||
assert(0);
|
||||
}
|
||||
|
||||
// Linker walltime and info_log were requested in options above.
|
||||
fprintf(stderr, "CUDA Link Completed in %fms [ %g ms]. Linker Output:\n%s\n",walltime,info_log,1e3*(rtc() - t0));
|
||||
|
||||
// Load resulting cuBin into module
|
||||
checkCudaErrors(cuModuleLoadData(&cudaModule, cuOut));
|
||||
|
||||
// Destroy the linker invocation
|
||||
checkCudaErrors(cuLinkDestroy(*lState));
|
||||
#endif
|
||||
fprintf(stderr, " loadModule took %g ms \n", 1e3*(rtc() - t0));
|
||||
return cudaModule;
|
||||
}
|
||||
void unloadModule(CUmodule &cudaModule)
|
||||
@@ -152,12 +256,13 @@ void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
|
||||
{
|
||||
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
|
||||
}
|
||||
#define deviceLaunch(func,nbx,nby,nbz,params) \
|
||||
#define deviceLaunch(func,params) \
|
||||
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \
|
||||
checkCudaErrors( \
|
||||
cuLaunchKernel( \
|
||||
(func), \
|
||||
((nbx-1)/(128/32)+1), (nby), (nbz), \
|
||||
128, 1, 1, \
|
||||
1,1,1, \
|
||||
32, 1, 1, \
|
||||
0, NULL, (params), NULL \
|
||||
));
|
||||
|
||||
@@ -200,104 +305,23 @@ std::vector<char> readBinary(const char * filename)
|
||||
|
||||
extern "C"
|
||||
{
|
||||
#if 0
|
||||
struct ModuleManager
|
||||
{
|
||||
private:
|
||||
typedef std::pair<std::string, CUModule> ModulePair;
|
||||
typedef std::map <std::string, CUModule> ModuleMap;
|
||||
ModuleMap module_list;
|
||||
|
||||
ModuleMap::iterator findModule(const char * module_name)
|
||||
{
|
||||
return module_list.find(std::string(module_name));
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
CUmodule loadModule(const char * module_name, const char * module_data)
|
||||
{
|
||||
const ModuleMap::iterator it = findModule(module_name)
|
||||
if (it != ModuleMap::end)
|
||||
{
|
||||
CUmodule cudaModule = loadModule(module);
|
||||
module_list.insert(std::make_pair(std::string(module_name), cudaModule));
|
||||
return cudaModule
|
||||
}
|
||||
return it->second;
|
||||
}
|
||||
void unloadModule(const char * module_name)
|
||||
{
|
||||
ModuleMap::iterator it = findModule(module_name)
|
||||
if (it != ModuleMap::end)
|
||||
module_list.erase(it);
|
||||
}
|
||||
};
|
||||
#endif
|
||||
|
||||
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
|
||||
{
|
||||
#if 0
|
||||
fprintf(stderr, " ptr= %p\n", *handlePtr);
|
||||
fprintf(stderr, " size= %d\n", (int)size);
|
||||
fprintf(stderr, " alignment= %d\n", (int)alignment);
|
||||
fprintf(stderr, " ------- \n\n");
|
||||
#endif
|
||||
return NULL;
|
||||
}
|
||||
void CUDALaunch(
|
||||
double CUDALaunch(
|
||||
void **handlePtr,
|
||||
const char * module_name,
|
||||
const char * module_1,
|
||||
const char * func_name,
|
||||
void **func_args,
|
||||
int countx, int county, int countz)
|
||||
void **func_args)
|
||||
{
|
||||
assert(module_name != NULL);
|
||||
assert(module_1 != NULL);
|
||||
assert(func_name != NULL);
|
||||
assert(func_args != NULL);
|
||||
#if 1
|
||||
const char * module = module_1;
|
||||
#else
|
||||
const std::vector<char> module_str = readBinary("kernel.cubin");
|
||||
const std::vector<char> module_str = readBinary("__kernels.ptx");
|
||||
const char * module = &module_str[0];
|
||||
#endif
|
||||
#if 1
|
||||
CUmodule cudaModule = loadModule(module);
|
||||
CUfunction cudaFunction = getFunction(cudaModule, func_name);
|
||||
deviceLaunch(cudaFunction, countx, county, countz, func_args);
|
||||
unloadModule(cudaModule);
|
||||
#else
|
||||
fprintf(stderr, " handle= %p\n", *handlePtr);
|
||||
fprintf(stderr, " count= %d %d %d\n", countx, county, countz);
|
||||
|
||||
fprintf(stderr, " module_name= %s \n", module_name);
|
||||
fprintf(stderr, " func_name= %s \n", func_name);
|
||||
// fprintf(stderr, " ptx= %s \n", module);
|
||||
fprintf(stderr, " x0= %g \n", *((float*)(func_args[0])));
|
||||
fprintf(stderr, " dx= %g \n", *((float*)(func_args[1])));
|
||||
fprintf(stderr, " y0= %g \n", *((float*)(func_args[2])));
|
||||
fprintf(stderr, " dy= %g \n", *((float*)(func_args[3])));
|
||||
fprintf(stderr, " w= %d \n", *((int*)(func_args[4])));
|
||||
fprintf(stderr, " h= %d \n", *((int*)(func_args[5])));
|
||||
fprintf(stderr, " xs= %d \n", *((int*)(func_args[6])));
|
||||
fprintf(stderr, " ys= %d \n", *((int*)(func_args[7])));
|
||||
fprintf(stderr, " maxit= %d \n", *((int*)(func_args[8])));
|
||||
fprintf(stderr, " ptr= %p \n", *((int**)(func_args[9])));
|
||||
fprintf(stderr, " ------- \n\n");
|
||||
#endif
|
||||
}
|
||||
void CUDASync(void *handle)
|
||||
{
|
||||
const double t0 = rtc();
|
||||
deviceLaunch(cudaFunction, func_args);
|
||||
checkCudaErrors(cuStreamSynchronize(0));
|
||||
const double dt = rtc() - t0;
|
||||
unloadModule(cudaModule);
|
||||
return dt;
|
||||
}
|
||||
void ISPCSync(void *handle)
|
||||
{
|
||||
}
|
||||
void CUDAFree(void *handle)
|
||||
{
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/********************/
|
||||
@@ -382,9 +406,15 @@ int main(int argc, char *argv[]) {
|
||||
for (unsigned int i = 0; i < width * height; ++i)
|
||||
buf[i] = 0;
|
||||
reset_and_start_timer();
|
||||
#if 0
|
||||
const double t0 = rtc();
|
||||
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, (int*)d_buf);
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
#else
|
||||
const char * func_name = "mandelbrot_ispc";
|
||||
void *func_args[] = {&x0, &y0, &x1, &y1, &width, &height, &maxIterations, &d_buf};
|
||||
const double dt = CUDALaunch(NULL, func_name, func_args);
|
||||
#endif
|
||||
minISPC = std::min(minISPC, dt);
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -42,8 +42,20 @@
|
||||
#include <algorithm>
|
||||
#include <string.h>
|
||||
#include "../timing.h"
|
||||
#include "mandelbrot_ispc.h"
|
||||
#include "mandelbrot_tasks3d_ispc.h"
|
||||
using namespace ispc;
|
||||
#include <sys/time.h>
|
||||
double rtc(void)
|
||||
{
|
||||
struct timeval Tvalue;
|
||||
double etime;
|
||||
struct timezone dummy;
|
||||
|
||||
gettimeofday(&Tvalue,&dummy);
|
||||
etime = (double) Tvalue.tv_sec +
|
||||
1.e-6*((double) Tvalue.tv_usec);
|
||||
return etime;
|
||||
}
|
||||
|
||||
extern void mandelbrot_serial(float x0, float y0, float x1, float y1,
|
||||
int width, int height, int maxIterations,
|
||||
@@ -113,8 +125,9 @@ int main(int argc, char *argv[]) {
|
||||
for (unsigned int i = 0; i < width * height; ++i)
|
||||
buf[i] = 0;
|
||||
reset_and_start_timer();
|
||||
const double t0 = rtc();
|
||||
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, buf);
|
||||
double dt = get_elapsed_mcycles();
|
||||
double dt = rtc() - t0; //get_elapsed_mcycles();
|
||||
minISPC = std::min(minISPC, dt);
|
||||
}
|
||||
|
||||
|
||||
@@ -31,12 +31,21 @@
|
||||
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#ifdef __NVPTX__
|
||||
#define taskIndex0 blockIndex0()
|
||||
#define taskIndex1 blockIndex1()
|
||||
#define taskCount0 blockCount0()
|
||||
#define taskCount1 blockCount1()
|
||||
#define programCount warpSize()
|
||||
#define programIndex laneIndex()
|
||||
#endif
|
||||
|
||||
static inline int
|
||||
mandel(float c_re, float c_im, int count) {
|
||||
float z_re = c_re, z_im = c_im;
|
||||
int i;
|
||||
for (i = 0; i < count; ++i) {
|
||||
if (z_re * z_re + z_im * z_im > 4.)
|
||||
if (z_re * z_re + z_im * z_im > 4.0f)
|
||||
break;
|
||||
|
||||
float new_re = z_re*z_re - z_im*z_im;
|
||||
@@ -65,13 +74,16 @@ mandelbrot_scanline(uniform float x0, uniform float dx,
|
||||
const uniform int ystart = taskIndex1 * yspan;
|
||||
const uniform int yend = min(ystart + yspan, height);
|
||||
|
||||
for (uniform int yi = ystart; yi < yend; yi++)
|
||||
for (uniform int xi = xstart; xi < xend; xi += programCount)
|
||||
{
|
||||
const float x = x0 + (xi + programIndex) * dx;
|
||||
const float y = y0 + yi * dy;
|
||||
|
||||
foreach (yi = ystart ... yend, xi = xstart ... xend) {
|
||||
float x = x0 + xi * dx;
|
||||
float y = y0 + yi * dy;
|
||||
|
||||
int index = yi * width + xi;
|
||||
output[index] = mandel(x, y, maxIterations);
|
||||
const int res = mandel(x,y,maxIterations);
|
||||
const int index = yi * width + (xi + programIndex);
|
||||
if (xi + programIndex < xend)
|
||||
output[index] = res;
|
||||
}
|
||||
|
||||
}
|
||||
@@ -84,8 +96,8 @@ mandelbrot_ispc(uniform float x0, uniform float y0,
|
||||
uniform int maxIterations, uniform int output[]) {
|
||||
uniform float dx = (x1 - x0) / width;
|
||||
uniform float dy = (y1 - y0) / height;
|
||||
const uniform int xspan = 16; /* make sure it is big enough to avoid false-sharing */
|
||||
const uniform int yspan = 16;
|
||||
const uniform int xspan = 32; /* make sure it is big enough to avoid false-sharing */
|
||||
const uniform int yspan = 4;
|
||||
|
||||
|
||||
#if 1
|
||||
|
||||
Reference in New Issue
Block a user