17
ast.cpp
17
ast.cpp
@@ -92,6 +92,7 @@ WalkAST(ASTNode *node, ASTPreCallBackFunc preFunc, ASTPostCallBackFunc postFunc,
|
||||
DoStmt *dos;
|
||||
ForStmt *fs;
|
||||
ForeachStmt *fes;
|
||||
ForeachActiveStmt *fas;
|
||||
ForeachUniqueStmt *fus;
|
||||
CaseStmt *cs;
|
||||
DefaultStmt *defs;
|
||||
@@ -138,6 +139,9 @@ WalkAST(ASTNode *node, ASTPreCallBackFunc preFunc, ASTPostCallBackFunc postFunc,
|
||||
postFunc, data);
|
||||
fes->stmts = (Stmt *)WalkAST(fes->stmts, preFunc, postFunc, data);
|
||||
}
|
||||
else if ((fas = dynamic_cast<ForeachActiveStmt *>(node)) != NULL) {
|
||||
fas->stmts = (Stmt *)WalkAST(fas->stmts, preFunc, postFunc, data);
|
||||
}
|
||||
else if ((fus = dynamic_cast<ForeachUniqueStmt *>(node)) != NULL) {
|
||||
fus->expr = (Expr *)WalkAST(fus->expr, preFunc, postFunc, data);
|
||||
fus->stmts = (Stmt *)WalkAST(fus->stmts, preFunc, postFunc, data);
|
||||
@@ -391,14 +395,15 @@ lCheckAllOffSafety(ASTNode *node, void *data) {
|
||||
}
|
||||
|
||||
if (dynamic_cast<ForeachStmt *>(node) != NULL ||
|
||||
dynamic_cast<ForeachActiveStmt *>(node) != NULL ||
|
||||
dynamic_cast<ForeachUniqueStmt *>(node) != NULL) {
|
||||
// foreach() statements also shouldn't be run with an all-off mask.
|
||||
// Since they re-establish an 'all on' mask, this would be pretty
|
||||
// unintuitive. (More generally, it's possibly a little strange to
|
||||
// allow foreach() in the presence of any non-uniform control
|
||||
// flow...)
|
||||
// The various foreach statements also shouldn't be run with an
|
||||
// all-off mask. Since they can re-establish an 'all on' mask,
|
||||
// this would be pretty unintuitive. (More generally, it's
|
||||
// possibly a little strange to allow foreach in the presence of
|
||||
// any non-uniform control flow...)
|
||||
//
|
||||
// Similarly, the implementation foreach_unique assumes as a
|
||||
// Similarly, the implementation of foreach_unique assumes as a
|
||||
// precondition that the mask won't be all off going into it, so
|
||||
// we'll enforce that here...
|
||||
*okPtr = false;
|
||||
|
||||
29
ctx.cpp
29
ctx.cpp
@@ -89,12 +89,14 @@ struct CFInfo {
|
||||
bool IsIf() { return type == If; }
|
||||
bool IsLoop() { return type == Loop; }
|
||||
bool IsForeach() { return (type == ForeachRegular ||
|
||||
type == ForeachActive ||
|
||||
type == ForeachUnique); }
|
||||
bool IsSwitch() { return type == Switch; }
|
||||
bool IsVarying() { return !isUniform; }
|
||||
bool IsUniform() { return isUniform; }
|
||||
|
||||
enum CFType { If, Loop, ForeachRegular, ForeachUnique, Switch };
|
||||
enum CFType { If, Loop, ForeachRegular, ForeachActive, ForeachUnique,
|
||||
Switch };
|
||||
CFType type;
|
||||
bool isUniform;
|
||||
llvm::BasicBlock *savedBreakTarget, *savedContinueTarget;
|
||||
@@ -143,7 +145,7 @@ private:
|
||||
CFInfo(CFType t, llvm::BasicBlock *bt, llvm::BasicBlock *ct,
|
||||
llvm::Value *sb, llvm::Value *sc, llvm::Value *sm,
|
||||
llvm::Value *lm) {
|
||||
Assert(t == ForeachRegular || t == ForeachUnique);
|
||||
Assert(t == ForeachRegular || t == ForeachActive || t == ForeachUnique);
|
||||
type = t;
|
||||
isUniform = false;
|
||||
savedBreakTarget = bt;
|
||||
@@ -190,6 +192,9 @@ CFInfo::GetForeach(FunctionEmitContext::ForeachType ft,
|
||||
case FunctionEmitContext::FOREACH_REGULAR:
|
||||
cfType = ForeachRegular;
|
||||
break;
|
||||
case FunctionEmitContext::FOREACH_ACTIVE:
|
||||
cfType = ForeachActive;
|
||||
break;
|
||||
case FunctionEmitContext::FOREACH_UNIQUE:
|
||||
cfType = ForeachUnique;
|
||||
break;
|
||||
@@ -744,6 +749,16 @@ FunctionEmitContext::Break(bool doCoherenceCheck) {
|
||||
}
|
||||
|
||||
|
||||
static bool
|
||||
lEnclosingLoopIsForeachActive(const std::vector<CFInfo *> &controlFlowInfo) {
|
||||
for (int i = (int)controlFlowInfo.size() - 1; i >= 0; --i) {
|
||||
if (controlFlowInfo[i]->type == CFInfo::ForeachActive)
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
FunctionEmitContext::Continue(bool doCoherenceCheck) {
|
||||
if (!continueTarget) {
|
||||
@@ -753,12 +768,16 @@ FunctionEmitContext::Continue(bool doCoherenceCheck) {
|
||||
}
|
||||
AssertPos(currentPos, controlFlowInfo.size() > 0);
|
||||
|
||||
if (ifsInCFAllUniform(CFInfo::Loop)) {
|
||||
if (ifsInCFAllUniform(CFInfo::Loop) ||
|
||||
lEnclosingLoopIsForeachActive(controlFlowInfo)) {
|
||||
// Similarly to 'break' statements, we can immediately jump to the
|
||||
// continue target if we're only in 'uniform' control flow within
|
||||
// loop or if we can tell that the mask is all on.
|
||||
// loop or if we can tell that the mask is all on. Here, we can
|
||||
// also jump if the enclosing loop is a 'foreach_active' loop, in
|
||||
// which case we know that only a single program instance is
|
||||
// executing.
|
||||
AddInstrumentationPoint("continue: uniform CF, jumped");
|
||||
if (ifsInCFAllUniform(CFInfo::Loop) && doCoherenceCheck)
|
||||
if (doCoherenceCheck)
|
||||
Warning(currentPos, "Coherent continue statement not necessary in "
|
||||
"fully uniform control flow.");
|
||||
BranchInst(continueTarget);
|
||||
|
||||
6
ctx.h
6
ctx.h
@@ -160,9 +160,9 @@ public:
|
||||
finished. */
|
||||
void EndLoop();
|
||||
|
||||
/** Indicates that code generation for a 'foreach', 'foreach_tiled', or
|
||||
'foreach_unique' loop is about to start. */
|
||||
enum ForeachType { FOREACH_REGULAR, FOREACH_UNIQUE };
|
||||
/** Indicates that code generation for a 'foreach', 'foreach_tiled',
|
||||
'foreach_active', or 'foreach_unique' loop is about to start. */
|
||||
enum ForeachType { FOREACH_REGULAR, FOREACH_ACTIVE, FOREACH_UNIQUE };
|
||||
void StartForeach(ForeachType ft);
|
||||
void EndForeach();
|
||||
|
||||
|
||||
376
docs/ispc.rst
376
docs/ispc.rst
@@ -105,12 +105,16 @@ Contents:
|
||||
|
||||
* `Conditional Statements: "if"`_
|
||||
* `Conditional Statements: "switch"`_
|
||||
* `Basic Iteration Statements: "for", "while", and "do"`_
|
||||
* `Iteration over unique elements: "foreach_unique"`_
|
||||
* `Iteration Statements`_
|
||||
|
||||
+ `Basic Iteration Statements: "for", "while", and "do"`_
|
||||
+ `Iteration over active program instances: "foreach_active"`_
|
||||
+ `Iteration over unique elements: "foreach_unique"`_
|
||||
+ `Parallel Iteration Statements: "foreach" and "foreach_tiled"`_
|
||||
+ `Parallel Iteration with "programIndex" and "programCount"`_
|
||||
|
||||
* `Unstructured Control Flow: "goto"`_
|
||||
* `"Coherent" Control Flow Statements: "cif" and Friends`_
|
||||
* `Parallel Iteration Statements: "foreach" and "foreach_tiled"`_
|
||||
* `Parallel Iteration with "programIndex" and "programCount"`_
|
||||
* `Functions and Function Calls`_
|
||||
|
||||
+ `Function Overloading`_
|
||||
@@ -1984,7 +1988,7 @@ format in memory; the benefits from SOA layout are discussed in more detail
|
||||
in the `Use "Structure of Arrays" Layout When Possible`_ section in the
|
||||
ispc Performance Guide.
|
||||
|
||||
.. _Use "Structure of Arrays" Layout When Possible: perf.html#use-structure-of-arrays-layout-when-possible
|
||||
.. _Use "Structure of Arrays" Layout When Possible: perfguide.html#use-structure-of-arrays-layout-when-possible
|
||||
|
||||
``ispc`` provides two key language-level capabilities for laying out and
|
||||
accessing data in SOA format:
|
||||
@@ -2348,11 +2352,19 @@ code below.
|
||||
x *= x;
|
||||
}
|
||||
|
||||
|
||||
Iteration Statements
|
||||
--------------------
|
||||
|
||||
In addition to the standard iteration statements ``for``, ``while``, and
|
||||
``do``, inherited from C/C++, ``ispc`` provides a number of additional
|
||||
specialized ways to iterate over data.
|
||||
|
||||
Basic Iteration Statements: "for", "while", and "do"
|
||||
----------------------------------------------------
|
||||
|
||||
``ispc`` supports ``for``, ``while``, and ``do`` loops, with the same
|
||||
specification as in C. Like C++, variables can be declared in the ``for``
|
||||
specification as in C. As in C++, variables can be declared in the ``for``
|
||||
statement itself:
|
||||
|
||||
::
|
||||
@@ -2374,6 +2386,58 @@ executing code in the loop body that didn't execute the ``continue`` will
|
||||
be unaffected by it.
|
||||
|
||||
|
||||
Iteration over active program instances: "foreach_active"
|
||||
---------------------------------------------------------
|
||||
|
||||
The ``foreach_active`` construct specifies a loop that serializes over the
|
||||
active program instances: the loop body executes once for each active
|
||||
program instance, and with only that program instance executing.
|
||||
|
||||
As an example of the use of this construct, consider an application where
|
||||
each program instance independently computes an offset into a shared array
|
||||
that is being updated:
|
||||
|
||||
::
|
||||
|
||||
uniform float array[...] = { ... };
|
||||
int index = ...;
|
||||
++array[index];
|
||||
|
||||
If more than one active program instance computes the same value for
|
||||
``index``, the above code has undefined behavior (see the section `Data
|
||||
Races Within a Gang`_ for details.) The increment of ``array[index]``
|
||||
could instead be written inside a ``foreach_active`` statement:
|
||||
|
||||
::
|
||||
|
||||
foreach_active (i) {
|
||||
++array[index];
|
||||
}
|
||||
|
||||
|
||||
The variable name provided in parenthesis after the ``foreach_active``
|
||||
keyword (here, ``index``), causes a ``const uniform int64`` local variable
|
||||
of that name to be declared, where the variable takes the ``programIndex``
|
||||
value of the program instance executing at each loop iteraton.
|
||||
|
||||
In the code above, because only one program instance is executing at a time
|
||||
when the loop body executes, the update to ``array`` is well-defined.
|
||||
Note that for this particular example, the "local atomic" operations in
|
||||
the standard library could be used instead to safely update ``array``.
|
||||
However, local atomics functions aren't always available or appropriate for
|
||||
more complex cases.)
|
||||
|
||||
``continue`` statements may be used inside ``foreach_active`` loops, though
|
||||
``break`` and ``return`` are prohibited. The order in which the active
|
||||
program instances are processed in the loop is not defined.
|
||||
|
||||
See the `Using "foreach_active" Effectively`_ Section in the ispc
|
||||
Performance Guide for more details about ``foreach_active``.
|
||||
|
||||
.. _Using "foreach_active" Effectively: perfguide.html#using-foreach-active-effectively
|
||||
|
||||
|
||||
|
||||
Iteration over unique elements: "foreach_unique"
|
||||
------------------------------------------------
|
||||
|
||||
@@ -2408,7 +2472,144 @@ evaluated once, and it must be of an atomic type (``float``, ``int``,
|
||||
etc.), an ``enum`` type, or a pointer type. The iteration variable ``val``
|
||||
is a variable of ``const uniform`` type of the iteration type; it can't be
|
||||
modified within the loop. Finally, ``break`` and ``return`` statements are
|
||||
illegal within the loop body, but ``continue`` statemetns are allowed.
|
||||
illegal within the loop body, but ``continue`` statements are allowed.
|
||||
|
||||
|
||||
Parallel Iteration Statements: "foreach" and "foreach_tiled"
|
||||
------------------------------------------------------------
|
||||
|
||||
The ``foreach`` and ``foreach_tiled`` constructs specify loops over a
|
||||
possibly multi-dimensional domain of integer ranges. Their role goes
|
||||
beyond "syntactic sugar"; they provides one of the two key ways of
|
||||
expressing parallel computation in ``ispc``.
|
||||
|
||||
In general, a ``foreach`` or ``foreach_tiled`` statement takes one or more
|
||||
dimension specifiers separated by commas, where each dimension is specified
|
||||
by ``identifier = start ... end``, where ``start`` is a signed integer
|
||||
value less than or equal to ``end``, specifying iteration over all integer
|
||||
values from ``start`` up to and including ``end-1``. An arbitrary number
|
||||
of iteration dimensions may be specified, with each one spanning a
|
||||
different range of values. Within the ``foreach`` loop, the given
|
||||
identifiers are available as ``const varying int32`` variables. The
|
||||
execution mask starts out "all on" at the start of each ``foreach`` loop
|
||||
iteration, but may be changed by control flow constructs within the loop.
|
||||
|
||||
It is illegal to have a ``break`` statement or a ``return`` statement
|
||||
within a ``foreach`` loop; a compile-time error will be issued in this
|
||||
case. (It is legal to have a ``break`` in a regular ``for`` loop that's
|
||||
nested inside a ``foreach`` loop.) ``continue`` statements are legal in
|
||||
``foreach`` loops; they have the same effect as in regular ``for`` loops:
|
||||
a program instances that executes a ``continue`` statement effectively
|
||||
skips over the rest of the loop body for the current iteration.
|
||||
|
||||
It is also currently illegal to have nested ``foreach`` statements; this
|
||||
limitation will be removed in a future release of ``ispc``.
|
||||
|
||||
As a specific example, consider the following ``foreach`` statement:
|
||||
|
||||
::
|
||||
|
||||
foreach (j = 0 ... height, i = 0 ... width) {
|
||||
// loop body--process data element (i,j)
|
||||
}
|
||||
|
||||
It specifies a loop over a 2D domain, where the ``j`` variable goes from 0
|
||||
to ``height-1`` and ``i`` goes from 0 to ``width-1``. Within the loop, the
|
||||
variables ``i`` and ``j`` are available and initialized accordingly.
|
||||
|
||||
``foreach`` loops actually cause the given iteration domain to be
|
||||
automatically mapped to the program instances in the gang, so that all of
|
||||
the data can be processed, in gang-sized chunks. As a specific example,
|
||||
consider a simple ``foreach`` loop like the following, on a target where
|
||||
the gang size is 8:
|
||||
|
||||
::
|
||||
|
||||
foreach (i = 0 ... 16) {
|
||||
// perform computation on element i
|
||||
}
|
||||
|
||||
One possible valid execution path of this loop would be for the program
|
||||
counter the step through the statements of this loop just ``16/8==2``
|
||||
times; the first time through, with the ``varying int32`` variable ``i``
|
||||
having the values (0,1,2,3,4,5,6,7) over the program instances, and the
|
||||
second time through, having the values (8,9,10,11,12,13,14,15), thus
|
||||
mapping the available program instances to all of the data by the end of
|
||||
the loop's execution.
|
||||
|
||||
In general, however, you shouldn't make any assumptions about the order in
|
||||
which elements of the iteration domain will be processed by a ``foreach``
|
||||
loop. For example, the following code exhibits undefined behavior:
|
||||
|
||||
::
|
||||
|
||||
uniform float a[10][100];
|
||||
foreach (i = 0 ... 10, j = 0 ... 100) {
|
||||
if (i == 0)
|
||||
a[i][j] = j;
|
||||
else
|
||||
// Error: can't assume that a[i-1][j] has been set yet
|
||||
a[i][j] = a[i-1][j];
|
||||
|
||||
The ``foreach`` statement generally subdivides the iteration domain by
|
||||
selecting sets of contiguous elements in the inner-most dimension of the
|
||||
iteration domain. This decomposition approach generally leads to coherent
|
||||
memory reads and writes, but may lead to worse control flow coherence than
|
||||
other decompositions.
|
||||
|
||||
Therefore, ``foreach_tiled`` decomposes the iteration domain in a way that
|
||||
tries to map locations in the domain to program instances in a way that is
|
||||
compact across all of the dimensions. For example, on a target with an
|
||||
8-wide gang size, the following ``foreach_tiled`` statement might process
|
||||
the iteration domain in chunks of 2 elements in ``j`` and 4 elements in
|
||||
``i`` each time. (The trade-offs between these two constructs are
|
||||
discussed in more detail in the `ispc Performance Guide`_.)
|
||||
|
||||
.. _ispc Performance Guide: perfguide.html#improving-control-flow-coherence-with-foreach-tiled
|
||||
|
||||
::
|
||||
|
||||
foreach_tiled (j = 0 ... height, i = 0 ... width) {
|
||||
// loop body--process data element (i,j)
|
||||
}
|
||||
|
||||
|
||||
Parallel Iteration with "programIndex" and "programCount"
|
||||
---------------------------------------------------------
|
||||
|
||||
In addition to ``foreach`` and ``foreach_tiled``, ``ispc`` provides a
|
||||
lower-level mechanism for mapping SPMD program instances to data to operate
|
||||
on via the built-in ``programIndex`` and ``programCount`` variables.
|
||||
|
||||
``programIndex`` gives the index of the SIMD-lane being used for running
|
||||
each program instance. (In other words, it's a varying integer value that
|
||||
has value zero for the first program instance, and so forth.) The
|
||||
``programCount`` builtin gives the total number of instances in the gang.
|
||||
Together, these can be used to uniquely map executing program instances to
|
||||
input data. [#]_
|
||||
|
||||
.. [#] ``programIndex`` is analogous to ``get_global_id()`` in OpenCL* and
|
||||
``threadIdx`` in CUDA*.
|
||||
|
||||
As a specific example, consider an ``ispc`` function that needs to perform
|
||||
some computation on an array of data.
|
||||
|
||||
::
|
||||
|
||||
for (uniform int i = 0; i < count; i += programCount) {
|
||||
float d = data[i + programIndex];
|
||||
float r = ....
|
||||
result[i + programIndex] = r;
|
||||
}
|
||||
|
||||
Here, we've written a loop that explicitly loops over the data in chunks of
|
||||
``programCount`` elements. In each loop iteration, the running program
|
||||
instances effectively collude amongst themselves using ``programIndex`` to
|
||||
determine which elements to work on in a way that ensures that all of the
|
||||
data elements will be processed. In this particular case, a ``foreach``
|
||||
loop would be preferable, as ``foreach`` naturally handles the case where
|
||||
``programCount`` doesn't evenly divide the number of elements to be
|
||||
processed, while the loop above assumes that case implicitly.
|
||||
|
||||
|
||||
Unstructured Control Flow: "goto"
|
||||
@@ -2479,139 +2680,6 @@ constructs in ``ispc`` that a loop will never be executed with an "all off"
|
||||
execution mask.
|
||||
|
||||
|
||||
Parallel Iteration Statements: "foreach" and "foreach_tiled"
|
||||
------------------------------------------------------------
|
||||
|
||||
The ``foreach`` and ``foreach_tiled`` constructs specify loops over a
|
||||
possibly multi-dimensional domain of integer ranges. Their role goes
|
||||
beyond "syntactic sugar"; they provides one of the two key ways of
|
||||
expressing parallel computation in ``ispc``.
|
||||
|
||||
In general, a ``foreach`` or ``foreach_tiled`` statement takes one or more
|
||||
dimension specifiers separated by commas, where each dimension is specified
|
||||
by ``identifier = start ... end``, where ``start`` is a signed integer
|
||||
value less than or equal to ``end``, specifying iteration over all integer
|
||||
values from ``start`` up to and including ``end-1``. An arbitrary number
|
||||
of iteration dimensions may be specified, with each one spanning a
|
||||
different range of values. Within the ``foreach`` loop, the given
|
||||
identifiers are available as ``const varying int32`` variables. The
|
||||
execution mask starts out "all on" at the start of each ``foreach`` loop
|
||||
iteration, but may be changed by control flow constructs within the loop.
|
||||
|
||||
It is illegal to have a ``break`` statement or a ``return`` statement
|
||||
within a ``foreach`` loop; a compile-time error will be issued in this
|
||||
case. (It is legal to have a ``break`` in a regular ``for`` loop that's
|
||||
nested inside a ``foreach`` loop.) ``continue`` statements are legal in
|
||||
``foreach`` loops; they have the same effect as in regular ``for`` loops:
|
||||
a program instances that executes a ``continue`` statement effectively
|
||||
skips over the rest of the loop body for the current iteration.
|
||||
|
||||
As a specific example, consider the following ``foreach`` statement:
|
||||
|
||||
::
|
||||
|
||||
foreach (j = 0 ... height, i = 0 ... width) {
|
||||
// loop body--process data element (i,j)
|
||||
}
|
||||
|
||||
It specifies a loop over a 2D domain, where the ``j`` variable goes from 0
|
||||
to ``height-1`` and ``i`` goes from 0 to ``width-1``. Within the loop, the
|
||||
variables ``i`` and ``j`` are available and initialized accordingly.
|
||||
|
||||
``foreach`` loops actually cause the given iteration domain to be
|
||||
automatically mapped to the program instances in the gang, so that all of
|
||||
the data can be processed, in gang-sized chunks. As a specific example,
|
||||
consider a simple ``foreach`` loop like the following, on a target where
|
||||
the gang size is 8:
|
||||
|
||||
::
|
||||
|
||||
foreach (i = 0 ... 16) {
|
||||
// perform computation on element i
|
||||
}
|
||||
|
||||
One possible valid execution path of this loop would be for the program
|
||||
counter the step through the statements of this loop just ``16/8==2``
|
||||
times; the first time through, with the ``varying int32`` variable ``i``
|
||||
having the values (0,1,2,3,4,5,6,7) over the program instances, and the
|
||||
second time through, having the values (8,9,10,11,12,13,14,15), thus
|
||||
mapping the available program instances to all of the data by the end of
|
||||
the loop's execution.
|
||||
|
||||
In general, however, you shouldn't make any assumptions about the order in
|
||||
which elements of the iteration domain will be processed by a ``foreach``
|
||||
loop. For example, the following code exhibits undefined behavior:
|
||||
|
||||
::
|
||||
|
||||
uniform float a[10][100];
|
||||
foreach (i = 0 ... 10, j = 0 ... 100) {
|
||||
if (i == 0)
|
||||
a[i][j] = j;
|
||||
else
|
||||
// Error: can't assume that a[i-1][j] has been set yet
|
||||
a[i][j] = a[i-1][j];
|
||||
|
||||
The ``foreach`` statement generally subdivides the iteration domain by
|
||||
selecting sets of contiguous elements in the inner-most dimension of the
|
||||
iteration domain. This decomposition approach generally leads to coherent
|
||||
memory reads and writes, but may lead to worse control flow coherence than
|
||||
other decompositions.
|
||||
|
||||
Therefore, ``foreach_tiled`` decomposes the iteration domain in a way that
|
||||
tries to map locations in the domain to program instances in a way that is
|
||||
compact across all of the dimensions. For example, on a target with an
|
||||
8-wide gang size, the following ``foreach_tiled`` statement might process
|
||||
the iteration domain in chunks of 2 elements in ``j`` and 4 elements in
|
||||
``i`` each time. (The trade-offs between these two constructs are
|
||||
discussed in more detail in the `ispc Performance Guide`_.)
|
||||
|
||||
.. _ispc Performance Guide: perf.html#improving-control-flow-coherence-with-foreach-tiled
|
||||
|
||||
::
|
||||
|
||||
foreach_tiled (j = 0 ... height, i = 0 ... width) {
|
||||
// loop body--process data element (i,j)
|
||||
}
|
||||
|
||||
|
||||
Parallel Iteration with "programIndex" and "programCount"
|
||||
---------------------------------------------------------
|
||||
|
||||
In addition to ``foreach`` and ``foreach_tiled``, ``ispc`` provides a
|
||||
lower-level mechanism for mapping SPMD program instances to data to operate
|
||||
on via the built-in ``programIndex`` and ``programCount`` variables.
|
||||
|
||||
``programIndex`` gives the index of the SIMD-lane being used for running
|
||||
each program instance. (In other words, it's a varying integer value that
|
||||
has value zero for the first program instance, and so forth.) The
|
||||
``programCount`` builtin gives the total number of instances in the gang.
|
||||
Together, these can be used to uniquely map executing program instances to
|
||||
input data. [#]_
|
||||
|
||||
.. [#] ``programIndex`` is analogous to ``get_global_id()`` in OpenCL* and
|
||||
``threadIdx`` in CUDA*.
|
||||
|
||||
As a specific example, consider an ``ispc`` function that needs to perform
|
||||
some computation on an array of data.
|
||||
|
||||
::
|
||||
|
||||
for (uniform int i = 0; i < count; i += programCount) {
|
||||
float d = data[i + programIndex];
|
||||
float r = ....
|
||||
result[i + programIndex] = r;
|
||||
}
|
||||
|
||||
Here, we've written a loop that explicitly loops over the data in chunks of
|
||||
``programCount`` elements. In each loop iteration, the running program
|
||||
instances effectively collude amongst themselves using ``programIndex`` to
|
||||
determine which elements to work on in a way that ensures that all of the
|
||||
data elements will be processed. In this particular case, a ``foreach``
|
||||
loop would be preferable, as ``foreach`` naturally handles the case where
|
||||
``programCount`` doesn't evenly divide the number of elements to be
|
||||
processed, while the loop above assumes that case implicitly.
|
||||
|
||||
Functions and Function Calls
|
||||
----------------------------
|
||||
|
||||
@@ -3452,7 +3520,7 @@ There are also variants of these functions that return the value as a
|
||||
discussion of an application of this variant to improve memory access
|
||||
performance in the `Performance Guide`_.
|
||||
|
||||
.. _Performance Guide: perf.html#understanding-gather-and-scatter
|
||||
.. _Performance Guide: perfguide.html#understanding-gather-and-scatter
|
||||
|
||||
::
|
||||
|
||||
@@ -4130,8 +4198,10 @@ from ``ispc`` must be declared as follows:
|
||||
It is illegal to overload functions declared with ``extern "C"`` linkage;
|
||||
``ispc`` issues an error in this case.
|
||||
|
||||
Function calls back to C/C++ are not made if none of the program instances
|
||||
want to make the call. For example, given code like:
|
||||
**Only a single function call is made back to C++ for the entire gang of
|
||||
runing program instances**. Furthermore, function calls back to C/C++ are not
|
||||
made if none of the program instances want to make the call. For example,
|
||||
given code like:
|
||||
|
||||
::
|
||||
|
||||
@@ -4174,6 +4244,24 @@ Application code can thus be written as:
|
||||
}
|
||||
}
|
||||
|
||||
In some cases, it can be desirable to generate a single call for each
|
||||
executing program instance, rather than one call for a gang. For example,
|
||||
the code below shows how one might call an existing math library routine
|
||||
that takes a scalar parameter.
|
||||
|
||||
::
|
||||
|
||||
extern "C" uniform double erf(uniform double);
|
||||
double v = ...;
|
||||
double result;
|
||||
foreach_active (instance) {
|
||||
uniform double r = erf(extract(v, instance));
|
||||
result = insert(result, instance, r);
|
||||
}
|
||||
|
||||
This code calls ``erf()`` once for each active program instance, passing it
|
||||
the program instance's value of ``v`` and storing the result in the
|
||||
instance's ``result`` value.
|
||||
|
||||
Data Layout
|
||||
-----------
|
||||
@@ -4309,7 +4397,7 @@ can also have a significant effect on performance; in general, creating
|
||||
groups of work that will tend to do similar computation across the SPMD
|
||||
program instances improves performance.
|
||||
|
||||
.. _ispc Performance Tuning Guide: http://ispc.github.com/perf.html
|
||||
.. _ispc Performance Tuning Guide: http://ispc.github.com/perfguide.html
|
||||
|
||||
|
||||
Disclaimer and Legal Information
|
||||
|
||||
@@ -21,6 +21,7 @@ the most out of ``ispc`` in practice.
|
||||
+ `Avoid 64-bit Addressing Calculations When Possible`_
|
||||
+ `Avoid Computation With 8 and 16-bit Integer Types`_
|
||||
+ `Implementing Reductions Efficiently`_
|
||||
+ `Using "foreach_active" Effectively`_
|
||||
+ `Using Low-level Vector Tricks`_
|
||||
+ `The "Fast math" Option`_
|
||||
+ `"inline" Aggressively`_
|
||||
@@ -510,6 +511,43 @@ values--very efficient code in the end.
|
||||
return reduce_add(sum);
|
||||
}
|
||||
|
||||
Using "foreach_active" Effectively
|
||||
----------------------------------
|
||||
|
||||
For high-performance code,
|
||||
|
||||
For example, consider this segment of code, from the introduction of
|
||||
``foreach_active`` in the ispc User's Guide:
|
||||
|
||||
::
|
||||
|
||||
uniform float array[...] = { ... };
|
||||
int index = ...;
|
||||
foreach_active (i) {
|
||||
++array[index];
|
||||
}
|
||||
|
||||
Here, ``index`` was assumed to possibly have the same value for multiple
|
||||
program instances, so the updates to ``array[index]`` are serialized by the
|
||||
``foreach_active`` statement in order to not have undefined results when
|
||||
``index`` values do collide.
|
||||
|
||||
The code generated by the compiler can be improved in this case by making
|
||||
it clear that only a single element of the array is accessed by
|
||||
``array[index]`` and that thus a general gather or scatter isn't required.
|
||||
Specifically, by using the ``extract()`` function from the standard library
|
||||
to extract the current program instance's value of ``index`` into a
|
||||
``uniform`` variable and then using that to index into ``array``, as below,
|
||||
more efficient code is generated.
|
||||
|
||||
::
|
||||
|
||||
foreach_active (instanceNum) {
|
||||
uniform int unifIndex = extract(index, instanceNum);
|
||||
++array[unifIndex];
|
||||
}
|
||||
|
||||
|
||||
Using Low-level Vector Tricks
|
||||
-----------------------------
|
||||
|
||||
|
||||
8
lex.ll
8
lex.ll
@@ -66,8 +66,8 @@ static int allTokens[] = {
|
||||
TOKEN_CONST, TOKEN_CONTINUE, TOKEN_CRETURN, TOKEN_DEFAULT, TOKEN_DO,
|
||||
TOKEN_DELETE, TOKEN_DOUBLE, TOKEN_ELSE, TOKEN_ENUM,
|
||||
TOKEN_EXPORT, TOKEN_EXTERN, TOKEN_FALSE, TOKEN_FLOAT, TOKEN_FOR,
|
||||
TOKEN_FOREACH, TOKEN_FOREACH_TILED, TOKEN_FOREACH_UNIQUE,
|
||||
TOKEN_GOTO, TOKEN_IF, TOKEN_IN, TOKEN_INLINE,
|
||||
TOKEN_FOREACH, TOKEN_FOREACH_ACTIVE, TOKEN_FOREACH_TILED,
|
||||
TOKEN_FOREACH_UNIQUE, TOKEN_GOTO, TOKEN_IF, TOKEN_IN, TOKEN_INLINE,
|
||||
TOKEN_INT, TOKEN_INT8, TOKEN_INT16, TOKEN_INT, TOKEN_INT64, TOKEN_LAUNCH,
|
||||
TOKEN_NEW, TOKEN_NULL, TOKEN_PRINT, TOKEN_RETURN, TOKEN_SOA, TOKEN_SIGNED,
|
||||
TOKEN_SIZEOF, TOKEN_STATIC, TOKEN_STRUCT, TOKEN_SWITCH, TOKEN_SYNC,
|
||||
@@ -115,6 +115,7 @@ void ParserInit() {
|
||||
tokenToName[TOKEN_FLOAT] = "float";
|
||||
tokenToName[TOKEN_FOR] = "for";
|
||||
tokenToName[TOKEN_FOREACH] = "foreach";
|
||||
tokenToName[TOKEN_FOREACH_ACTIVE] = "foreach_active";
|
||||
tokenToName[TOKEN_FOREACH_TILED] = "foreach_tiled";
|
||||
tokenToName[TOKEN_FOREACH_UNIQUE] = "foreach_unique";
|
||||
tokenToName[TOKEN_GOTO] = "goto";
|
||||
@@ -226,6 +227,7 @@ void ParserInit() {
|
||||
tokenNameRemap["TOKEN_FLOAT"] = "\'float\'";
|
||||
tokenNameRemap["TOKEN_FOR"] = "\'for\'";
|
||||
tokenNameRemap["TOKEN_FOREACH"] = "\'foreach\'";
|
||||
tokenNameRemap["TOKEN_FOREACH_ACTIVE"] = "\'foreach_active\'";
|
||||
tokenNameRemap["TOKEN_FOREACH_TILED"] = "\'foreach_tiled\'";
|
||||
tokenNameRemap["TOKEN_FOREACH_UNIQUE"] = "\'foreach_unique\'";
|
||||
tokenNameRemap["TOKEN_GOTO"] = "\'goto\'";
|
||||
@@ -369,8 +371,8 @@ extern { RT; return TOKEN_EXTERN; }
|
||||
false { RT; return TOKEN_FALSE; }
|
||||
float { RT; return TOKEN_FLOAT; }
|
||||
for { RT; return TOKEN_FOR; }
|
||||
__foreach_active { RT; return TOKEN_FOREACH_ACTIVE; }
|
||||
foreach { RT; return TOKEN_FOREACH; }
|
||||
foreach_active { RT; return TOKEN_FOREACH_ACTIVE; }
|
||||
foreach_tiled { RT; return TOKEN_FOREACH_TILED; }
|
||||
foreach_unique { RT; return TOKEN_FOREACH_UNIQUE; }
|
||||
goto { RT; return TOKEN_GOTO; }
|
||||
|
||||
8
parse.yy
8
parse.yy
@@ -117,8 +117,8 @@ static const char *lBuiltinTokens[] = {
|
||||
"assert", "bool", "break", "case", "cbreak", "ccontinue", "cdo",
|
||||
"cfor", "cif", "cwhile", "const", "continue", "creturn", "default",
|
||||
"do", "delete", "double", "else", "enum", "export", "extern", "false",
|
||||
"float", "for", "foreach", "foreach_tiled", "foreach_unique",
|
||||
"goto", "if", "in", "inline",
|
||||
"float", "for", "foreach", "foreach_active", "foreach_tiled",
|
||||
"foreach_unique", "goto", "if", "in", "inline",
|
||||
"int", "int8", "int16", "int32", "int64", "launch", "new", "NULL",
|
||||
"print", "return", "signed", "sizeof", "static", "struct", "switch",
|
||||
"sync", "task", "true", "typedef", "uniform", "unmasked", "unsigned",
|
||||
@@ -1688,7 +1688,7 @@ foreach_active_scope
|
||||
foreach_active_identifier
|
||||
: TOKEN_IDENTIFIER
|
||||
{
|
||||
$$ = new Symbol(yytext, @1, AtomicType::UniformInt32);
|
||||
$$ = new Symbol(yytext, @1, AtomicType::UniformInt64->GetAsConstType());
|
||||
}
|
||||
;
|
||||
|
||||
@@ -1838,7 +1838,7 @@ iteration_statement
|
||||
}
|
||||
statement
|
||||
{
|
||||
$$ = CreateForeachActiveStmt($3, $6, Union(@1, @4));
|
||||
$$ = new ForeachActiveStmt($3, $6, Union(@1, @4));
|
||||
m->symbolTable->PopScope();
|
||||
}
|
||||
| foreach_unique_scope '(' foreach_unique_identifier TOKEN_IN
|
||||
|
||||
74
stdlib.ispc
74
stdlib.ispc
@@ -421,7 +421,7 @@ static inline void memcpy(void * varying dst, void * varying src,
|
||||
da[programIndex] = dst;
|
||||
sa[programIndex] = src;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
void * uniform d = da[i], * uniform s = sa[i];
|
||||
__memcpy32((int8 * uniform)d, (int8 * uniform)s, extract(count, i));
|
||||
}
|
||||
@@ -435,7 +435,7 @@ static inline void memcpy64(void * varying dst, void * varying src,
|
||||
da[programIndex] = dst;
|
||||
sa[programIndex] = src;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
void * uniform d = da[i], * uniform s = sa[i];
|
||||
__memcpy64((int8 * uniform)d, (int8 * uniform)s, extract(count, i));
|
||||
}
|
||||
@@ -459,7 +459,7 @@ static inline void memmove(void * varying dst, void * varying src,
|
||||
da[programIndex] = dst;
|
||||
sa[programIndex] = src;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
void * uniform d = da[i], * uniform s = sa[i];
|
||||
__memmove32((int8 * uniform)d, (int8 * uniform)s, extract(count, i));
|
||||
}
|
||||
@@ -473,7 +473,7 @@ static inline void memmove64(void * varying dst, void * varying src,
|
||||
da[programIndex] = dst;
|
||||
sa[programIndex] = src;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
void * uniform d = da[i], * uniform s = sa[i];
|
||||
__memmove64((int8 * uniform)d, (int8 * uniform)s, extract(count, i));
|
||||
}
|
||||
@@ -493,7 +493,7 @@ static inline void memset(void * varying ptr, int8 val, int32 count) {
|
||||
void * uniform pa[programCount];
|
||||
pa[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
__memset32((int8 * uniform)pa[i], extract(val, i), extract(count, i));
|
||||
}
|
||||
}
|
||||
@@ -502,7 +502,7 @@ static inline void memset64(void * varying ptr, int8 val, int64 count) {
|
||||
void * uniform pa[programCount];
|
||||
pa[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
__memset64((int8 * uniform)pa[i], extract(val, i), extract(count, i));
|
||||
}
|
||||
}
|
||||
@@ -711,7 +711,7 @@ static inline void prefetch_l1(const void * varying ptr) {
|
||||
const void * uniform ptrArray[programCount];
|
||||
ptrArray[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
const void * uniform p = ptrArray[i];
|
||||
prefetch_l1(p);
|
||||
}
|
||||
@@ -721,7 +721,7 @@ static inline void prefetch_l2(const void * varying ptr) {
|
||||
const void * uniform ptrArray[programCount];
|
||||
ptrArray[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
const void * uniform p = ptrArray[i];
|
||||
prefetch_l2(p);
|
||||
}
|
||||
@@ -731,7 +731,7 @@ static inline void prefetch_l3(const void * varying ptr) {
|
||||
const void * uniform ptrArray[programCount];
|
||||
ptrArray[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
const void * uniform p = ptrArray[i];
|
||||
prefetch_l3(p);
|
||||
}
|
||||
@@ -741,7 +741,7 @@ static inline void prefetch_nt(const void * varying ptr) {
|
||||
const void * uniform ptrArray[programCount];
|
||||
ptrArray[programIndex] = ptr;
|
||||
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
const void * uniform p = ptrArray[i];
|
||||
prefetch_nt(p);
|
||||
}
|
||||
@@ -1621,7 +1621,7 @@ static inline TA atomic_##OPA##_global(uniform TA * varying ptr, TA value) { \
|
||||
uniform TA * uniform ptrArray[programCount]; \
|
||||
ptrArray[programIndex] = ptr; \
|
||||
TA ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TA * uniform p = ptrArray[i]; \
|
||||
uniform TA v = extract(value, i); \
|
||||
uniform TA r = __atomic_##OPB##_uniform_##TB##_global(p, v); \
|
||||
@@ -1672,7 +1672,7 @@ static inline TA atomic_swap_global(uniform TA * varying ptr, TA value) { \
|
||||
uniform TA * uniform ptrArray[programCount]; \
|
||||
ptrArray[programIndex] = ptr; \
|
||||
TA ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TA * uniform p = ptrArray[i]; \
|
||||
uniform TA v = extract(value, i); \
|
||||
uniform TA r = __atomic_swap_uniform_##TB##_global(p, v); \
|
||||
@@ -1699,7 +1699,7 @@ static inline TA atomic_##OPA##_global(uniform TA * varying ptr, \
|
||||
uniform TA * uniform ptrArray[programCount]; \
|
||||
ptrArray[programIndex] = ptr; \
|
||||
TA ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TA * uniform p = ptrArray[i]; \
|
||||
uniform TA v = extract(value, i); \
|
||||
uniform TA r = __atomic_##OPB##_uniform_##TB##_global(p, v); \
|
||||
@@ -1774,7 +1774,7 @@ static inline TA atomic_compare_exchange_global( \
|
||||
uniform TA * uniform ptrArray[programCount]; \
|
||||
ptrArray[programIndex] = ptr; \
|
||||
TA ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TA r = \
|
||||
__atomic_compare_exchange_uniform_##TB##_global(ptrArray[i], \
|
||||
extract(oldval, i), \
|
||||
@@ -1848,7 +1848,7 @@ static inline uniform TYPE atomic_##NAME##_local(uniform TYPE * uniform ptr, \
|
||||
} \
|
||||
static inline TYPE atomic_##NAME##_local(uniform TYPE * uniform ptr, TYPE value) { \
|
||||
TYPE ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
ret = insert(ret, i, *ptr); \
|
||||
*ptr = OPFUNC(*ptr, extract(value, i)); \
|
||||
} \
|
||||
@@ -1858,7 +1858,7 @@ static inline TYPE atomic_##NAME##_local(uniform TYPE * p, TYPE value) { \
|
||||
TYPE ret; \
|
||||
uniform TYPE * uniform ptrs[programCount]; \
|
||||
ptrs[programIndex] = p; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
ret = insert(ret, i, *ptrs[i]); \
|
||||
*ptrs[i] = OPFUNC(*ptrs[i], extract(value, i)); \
|
||||
} \
|
||||
@@ -1975,7 +1975,7 @@ static inline uniform TYPE atomic_compare_exchange_local(uniform TYPE * uniform
|
||||
static inline TYPE atomic_compare_exchange_local(uniform TYPE * uniform ptr, \
|
||||
TYPE cmp, TYPE update) { \
|
||||
TYPE ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TYPE old = *ptr; \
|
||||
if (old == extract(cmp, i)) \
|
||||
*ptr = extract(update, i); \
|
||||
@@ -1988,7 +1988,7 @@ static inline TYPE atomic_compare_exchange_local(uniform TYPE * varying p, \
|
||||
uniform TYPE * uniform ptrs[programCount]; \
|
||||
ptrs[programIndex] = p; \
|
||||
TYPE ret; \
|
||||
__foreach_active (i) { \
|
||||
foreach_active (i) { \
|
||||
uniform TYPE old = *ptrs[i]; \
|
||||
if (old == extract(cmp, i)) \
|
||||
*ptrs[i] = extract(update, i); \
|
||||
@@ -2127,7 +2127,7 @@ static inline float sin(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_sinf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2259,7 +2259,7 @@ static inline float asin(float x) {
|
||||
if (__math_lib == __math_lib_svml ||
|
||||
__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_asinf(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2364,7 +2364,7 @@ static inline float cos(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_cosf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2502,7 +2502,7 @@ static inline void sincos(float x_full, varying float * uniform sin_result,
|
||||
__svml_sincos(x_full, sin_result, cos_result);
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float s, c;
|
||||
__stdlib_sincosf(extract(x_full, i), &s, &c);
|
||||
*sin_result = insert(*sin_result, i, s);
|
||||
@@ -2635,7 +2635,7 @@ static inline float tan(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_tanf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2786,7 +2786,7 @@ static inline float atan(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_atanf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2881,7 +2881,7 @@ static inline float atan2(float y, float x) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_atan2f(extract(y, i), extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -2944,7 +2944,7 @@ static inline float exp(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_expf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3151,7 +3151,7 @@ static inline float log(float x_full) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_logf(extract(x_full, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3326,7 +3326,7 @@ static inline float pow(float a, float b) {
|
||||
}
|
||||
else if (__math_lib == __math_lib_system) {
|
||||
float ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform float r = __stdlib_powf(extract(a, i), extract(b, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3416,7 +3416,7 @@ static inline double sin(double x) {
|
||||
return sin((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_sin(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3438,7 +3438,7 @@ static inline double cos(double x) {
|
||||
return cos((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_cos(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3464,7 +3464,7 @@ static inline void sincos(double x, varying double * uniform sin_result,
|
||||
*cos_result = cr;
|
||||
}
|
||||
else {
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double sr, cr;
|
||||
__stdlib_sincos(extract(x, i), &sr, &cr);
|
||||
*sin_result = insert(*sin_result, i, sr);
|
||||
@@ -3492,7 +3492,7 @@ static inline double tan(double x) {
|
||||
return tan((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_tan(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3514,7 +3514,7 @@ static inline double atan(double x) {
|
||||
return atan((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_atan(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3536,7 +3536,7 @@ static inline double atan2(double y, double x) {
|
||||
return atan2((float)y, (float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_atan2(extract(y, i), extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3558,7 +3558,7 @@ static inline double exp(double x) {
|
||||
return exp((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_exp(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3580,7 +3580,7 @@ static inline double log(double x) {
|
||||
return log((float)x);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_log(extract(x, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
@@ -3602,7 +3602,7 @@ static inline double pow(double a, double b) {
|
||||
return pow((float)a, (float)b);
|
||||
else {
|
||||
double ret;
|
||||
__foreach_active (i) {
|
||||
foreach_active (i) {
|
||||
uniform double r = __stdlib_pow(extract(a, i), extract(b, i));
|
||||
ret = insert(ret, i, r);
|
||||
}
|
||||
|
||||
259
stmt.cpp
259
stmt.cpp
@@ -1915,6 +1915,188 @@ ForeachStmt::Print(int indent) const {
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// ForeachActiveStmt
|
||||
|
||||
ForeachActiveStmt::ForeachActiveStmt(Symbol *s, Stmt *st, SourcePos pos)
|
||||
: Stmt(pos) {
|
||||
sym = s;
|
||||
stmts = st;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
ForeachActiveStmt::EmitCode(FunctionEmitContext *ctx) const {
|
||||
if (!ctx->GetCurrentBasicBlock())
|
||||
return;
|
||||
|
||||
// Allocate storage for the symbol that we'll use for the uniform
|
||||
// variable that holds the current program instance in each loop
|
||||
// iteration.
|
||||
if (sym->type == NULL) {
|
||||
Assert(m->errorCount > 0);
|
||||
return;
|
||||
}
|
||||
Assert(Type::Equal(sym->type,
|
||||
AtomicType::UniformInt64->GetAsConstType()));
|
||||
sym->storagePtr = ctx->AllocaInst(LLVMTypes::Int64Type, sym->name.c_str());
|
||||
|
||||
ctx->SetDebugPos(pos);
|
||||
ctx->EmitVariableDebugInfo(sym);
|
||||
|
||||
// The various basic blocks that we'll need in the below
|
||||
llvm::BasicBlock *bbFindNext =
|
||||
ctx->CreateBasicBlock("foreach_active_find_next");
|
||||
llvm::BasicBlock *bbBody = ctx->CreateBasicBlock("foreach_active_body");
|
||||
llvm::BasicBlock *bbCheckForMore =
|
||||
ctx->CreateBasicBlock("foreach_active_check_for_more");
|
||||
llvm::BasicBlock *bbDone = ctx->CreateBasicBlock("foreach_active_done");
|
||||
|
||||
// Save the old mask so that we can restore it at the end
|
||||
llvm::Value *oldInternalMask = ctx->GetInternalMask();
|
||||
|
||||
// Now, *maskBitsPtr will maintain a bitmask for the lanes that remain
|
||||
// to be processed by a pass through the loop body. It starts out with
|
||||
// the current execution mask (which should never be all off going in
|
||||
// to this)...
|
||||
llvm::Value *oldFullMask = ctx->GetFullMask();
|
||||
llvm::Value *maskBitsPtr =
|
||||
ctx->AllocaInst(LLVMTypes::Int64Type, "mask_bits");
|
||||
llvm::Value *movmsk = ctx->LaneMask(oldFullMask);
|
||||
ctx->StoreInst(movmsk, maskBitsPtr);
|
||||
|
||||
// Officially start the loop.
|
||||
ctx->StartScope();
|
||||
ctx->StartForeach(FunctionEmitContext::FOREACH_ACTIVE);
|
||||
ctx->SetContinueTarget(bbCheckForMore);
|
||||
|
||||
// Onward to find the first set of program instance to run the loop for
|
||||
ctx->BranchInst(bbFindNext);
|
||||
|
||||
ctx->SetCurrentBasicBlock(bbFindNext); {
|
||||
// Load the bitmask of the lanes left to be processed
|
||||
llvm::Value *remainingBits = ctx->LoadInst(maskBitsPtr, "remaining_bits");
|
||||
|
||||
// Find the index of the first set bit in the mask
|
||||
llvm::Function *ctlzFunc =
|
||||
m->module->getFunction("__count_trailing_zeros_i64");
|
||||
Assert(ctlzFunc != NULL);
|
||||
llvm::Value *firstSet = ctx->CallInst(ctlzFunc, NULL, remainingBits,
|
||||
"first_set");
|
||||
|
||||
// Store that value into the storage allocated for the iteration
|
||||
// variable.
|
||||
ctx->StoreInst(firstSet, sym->storagePtr);
|
||||
|
||||
// Now set the execution mask to be only on for the current program
|
||||
// instance. (TODO: is there a more efficient way to do this? e.g.
|
||||
// for AVX1, we might want to do this as float rather than int
|
||||
// math...)
|
||||
|
||||
// Get the "program index" vector value
|
||||
llvm::Value *programIndex =
|
||||
llvm::UndefValue::get(LLVMTypes::Int32VectorType);
|
||||
for (int i = 0; i < g->target.vectorWidth; ++i)
|
||||
programIndex = ctx->InsertInst(programIndex, LLVMInt32(i), i,
|
||||
"prog_index");
|
||||
|
||||
// And smear the current lane out to a vector
|
||||
llvm::Value *firstSet32 =
|
||||
ctx->TruncInst(firstSet, LLVMTypes::Int32Type, "first_set32");
|
||||
llvm::Value *firstSet32Smear = ctx->SmearUniform(firstSet32);
|
||||
|
||||
// Now set the execution mask based on doing a vector compare of
|
||||
// these two
|
||||
llvm::Value *iterMask =
|
||||
ctx->CmpInst(llvm::Instruction::ICmp, llvm::CmpInst::ICMP_EQ,
|
||||
firstSet32Smear, programIndex);
|
||||
iterMask = ctx->I1VecToBoolVec(iterMask);
|
||||
|
||||
ctx->SetInternalMask(iterMask);
|
||||
|
||||
// Also update the bitvector of lanes left to turn off the bit for
|
||||
// the lane we're about to run.
|
||||
llvm::Value *setMask =
|
||||
ctx->BinaryOperator(llvm::Instruction::Shl, LLVMInt64(1),
|
||||
firstSet, "set_mask");
|
||||
llvm::Value *notSetMask = ctx->NotOperator(setMask);
|
||||
llvm::Value *newRemaining =
|
||||
ctx->BinaryOperator(llvm::Instruction::And, remainingBits,
|
||||
notSetMask, "new_remaining");
|
||||
ctx->StoreInst(newRemaining, maskBitsPtr);
|
||||
|
||||
// and onward to run the loop body...
|
||||
ctx->BranchInst(bbBody);
|
||||
}
|
||||
|
||||
ctx->SetCurrentBasicBlock(bbBody); {
|
||||
// Run the code in the body of the loop. This is easy now.
|
||||
if (stmts)
|
||||
stmts->EmitCode(ctx);
|
||||
|
||||
Assert(ctx->GetCurrentBasicBlock() != NULL);
|
||||
ctx->BranchInst(bbCheckForMore);
|
||||
}
|
||||
|
||||
ctx->SetCurrentBasicBlock(bbCheckForMore); {
|
||||
// At the end of the loop body (either due to running the
|
||||
// statements normally, or a continue statement in the middle of
|
||||
// the loop that jumps to the end, see if there are any lanes left
|
||||
// to be processed.
|
||||
llvm::Value *remainingBits = ctx->LoadInst(maskBitsPtr, "remaining_bits");
|
||||
llvm::Value *nonZero =
|
||||
ctx->CmpInst(llvm::Instruction::ICmp, llvm::CmpInst::ICMP_NE,
|
||||
remainingBits, LLVMInt64(0), "remaining_ne_zero");
|
||||
ctx->BranchInst(bbFindNext, bbDone, nonZero);
|
||||
}
|
||||
|
||||
ctx->SetCurrentBasicBlock(bbDone);
|
||||
ctx->SetInternalMask(oldInternalMask);
|
||||
ctx->EndForeach();
|
||||
ctx->EndScope();
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
ForeachActiveStmt::Print(int indent) const {
|
||||
printf("%*cForeach_active Stmt", indent, ' ');
|
||||
pos.Print();
|
||||
printf("\n");
|
||||
|
||||
printf("%*cIter symbol: ", indent+4, ' ');
|
||||
if (sym != NULL) {
|
||||
printf("%s", sym->name.c_str());
|
||||
if (sym->type != NULL)
|
||||
printf(" %s", sym->type->GetString().c_str());
|
||||
}
|
||||
else
|
||||
printf("NULL");
|
||||
printf("\n");
|
||||
|
||||
printf("%*cStmts:\n", indent+4, ' ');
|
||||
if (stmts != NULL)
|
||||
stmts->Print(indent+8);
|
||||
else
|
||||
printf("NULL");
|
||||
printf("\n");
|
||||
}
|
||||
|
||||
|
||||
Stmt *
|
||||
ForeachActiveStmt::TypeCheck() {
|
||||
if (sym == NULL)
|
||||
return NULL;
|
||||
|
||||
return this;
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
ForeachActiveStmt::EstimateCost() const {
|
||||
return COST_VARYING_LOOP;
|
||||
}
|
||||
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
// ForeachUniqueStmt
|
||||
|
||||
@@ -3043,80 +3225,3 @@ int
|
||||
DeleteStmt::EstimateCost() const {
|
||||
return COST_DELETE;
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
/** This generates AST nodes for an __foreach_active statement. This
|
||||
construct can be synthesized ouf of the existing ForStmt (and other AST
|
||||
nodes), so here we just build up the AST that we need rather than
|
||||
having a new Stmt implementation for __foreach_active.
|
||||
|
||||
@param iterSym Symbol for the iteration variable (e.g. "i" in
|
||||
__foreach_active (i) { .. .}
|
||||
@param stmts Statements to execute each time through the loop, for
|
||||
each active program instance.
|
||||
@param pos Position of the __foreach_active statement in the source
|
||||
file.
|
||||
*/
|
||||
Stmt *
|
||||
CreateForeachActiveStmt(Symbol *iterSym, Stmt *stmts, SourcePos pos) {
|
||||
if (iterSym == NULL) {
|
||||
AssertPos(pos, m->errorCount > 0);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// loop initializer: set iter = 0
|
||||
std::vector<VariableDeclaration> var;
|
||||
ConstExpr *zeroExpr = new ConstExpr(AtomicType::UniformInt32, 0,
|
||||
iterSym->pos);
|
||||
var.push_back(VariableDeclaration(iterSym, zeroExpr));
|
||||
Stmt *initStmt = new DeclStmt(var, iterSym->pos);
|
||||
|
||||
// loop test: (iter < programCount)
|
||||
ConstExpr *progCountExpr =
|
||||
new ConstExpr(AtomicType::UniformInt32, g->target.vectorWidth,
|
||||
pos);
|
||||
SymbolExpr *symExpr = new SymbolExpr(iterSym, iterSym->pos);
|
||||
Expr *testExpr = new BinaryExpr(BinaryExpr::Lt, symExpr, progCountExpr,
|
||||
pos);
|
||||
|
||||
// loop step: ++iterSym
|
||||
UnaryExpr *incExpr = new UnaryExpr(UnaryExpr::PreInc, symExpr, pos);
|
||||
Stmt *stepStmt = new ExprStmt(incExpr, pos);
|
||||
|
||||
// loop body
|
||||
// First, call __movmsk(__mask)) to get the mask as a set of bits.
|
||||
// This should be hoisted out of the loop
|
||||
Symbol *maskSym = m->symbolTable->LookupVariable("__mask");
|
||||
AssertPos(pos, maskSym != NULL);
|
||||
Expr *maskVecExpr = new SymbolExpr(maskSym, pos);
|
||||
std::vector<Symbol *> mmFuns;
|
||||
m->symbolTable->LookupFunction("__movmsk", &mmFuns);
|
||||
AssertPos(pos, mmFuns.size() == (g->target.maskBitCount == 32 ? 2 : 1));
|
||||
FunctionSymbolExpr *movmskFunc = new FunctionSymbolExpr("__movmsk", mmFuns,
|
||||
pos);
|
||||
ExprList *movmskArgs = new ExprList(maskVecExpr, pos);
|
||||
FunctionCallExpr *movmskExpr = new FunctionCallExpr(movmskFunc, movmskArgs,
|
||||
pos);
|
||||
|
||||
// Compute the per lane mask to test the mask bits against: (1 << iter)
|
||||
ConstExpr *oneExpr = new ConstExpr(AtomicType::UniformInt64, int64_t(1),
|
||||
iterSym->pos);
|
||||
Expr *shiftLaneExpr = new BinaryExpr(BinaryExpr::Shl, oneExpr, symExpr,
|
||||
pos);
|
||||
|
||||
// Compute the AND: movmsk & (1 << iter)
|
||||
Expr *maskAndLaneExpr = new BinaryExpr(BinaryExpr::BitAnd, movmskExpr,
|
||||
shiftLaneExpr, pos);
|
||||
// Test to see if it's non-zero: (mask & (1 << iter)) != 0
|
||||
Expr *ifTestExpr = new BinaryExpr(BinaryExpr::NotEqual, maskAndLaneExpr,
|
||||
zeroExpr, pos);
|
||||
|
||||
// Now, enclose the provided statements in an if test such that they
|
||||
// only run if the mask is non-zero for the lane we're currently
|
||||
// handling in the loop.
|
||||
IfStmt *laneCheckIf = new IfStmt(ifTestExpr, stmts, NULL, false, pos);
|
||||
|
||||
// And return a for loop that wires it all together.
|
||||
return new ForStmt(initStmt, testExpr, stepStmt, laneCheckIf, false, pos);
|
||||
}
|
||||
|
||||
17
stmt.h
17
stmt.h
@@ -260,6 +260,23 @@ public:
|
||||
};
|
||||
|
||||
|
||||
/** Iteration over each executing program instance.
|
||||
*/
|
||||
class ForeachActiveStmt : public Stmt {
|
||||
public:
|
||||
ForeachActiveStmt(Symbol *iterSym, Stmt *stmts, SourcePos pos);
|
||||
|
||||
void EmitCode(FunctionEmitContext *ctx) const;
|
||||
void Print(int indent) const;
|
||||
|
||||
Stmt *TypeCheck();
|
||||
int EstimateCost() const;
|
||||
|
||||
Symbol *sym;
|
||||
Stmt *stmts;
|
||||
};
|
||||
|
||||
|
||||
/** Parallel iteration over each unique value in the given (varying)
|
||||
expression.
|
||||
*/
|
||||
|
||||
16
tests/foreach-active-1.ispc
Normal file
16
tests/foreach-active-1.ispc
Normal file
@@ -0,0 +1,16 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
|
||||
export void f_f(uniform float RET[], uniform float aFOO[]) {
|
||||
float a = aFOO[programIndex];
|
||||
uniform int count = 0;
|
||||
if (programIndex & 1)
|
||||
foreach_active (i)
|
||||
++count;
|
||||
RET[programIndex] = count;
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = programCount / 2;
|
||||
}
|
||||
16
tests/foreach-active-2.ispc
Normal file
16
tests/foreach-active-2.ispc
Normal file
@@ -0,0 +1,16 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
|
||||
export void f_f(uniform float RET[], uniform float aFOO[]) {
|
||||
float a = aFOO[programIndex];
|
||||
uniform int count = 0;
|
||||
if (programIndex & 1)
|
||||
foreach_active (i)
|
||||
++a;
|
||||
RET[programIndex] = a;
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = (1 + programIndex) + ((programIndex & 1) ? 1 : 0);
|
||||
}
|
||||
16
tests/foreach-active-3.ispc
Normal file
16
tests/foreach-active-3.ispc
Normal file
@@ -0,0 +1,16 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
|
||||
export void f_f(uniform float RET[], uniform float aFOO[]) {
|
||||
float a = aFOO[programIndex];
|
||||
RET[programIndex] = a;
|
||||
|
||||
if (programIndex & 1)
|
||||
foreach_active (i)
|
||||
++RET[i];
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = (1 + programIndex) + ((programIndex & 1) ? 1 : 0);
|
||||
}
|
||||
21
tests/foreach-active-4.ispc
Normal file
21
tests/foreach-active-4.ispc
Normal file
@@ -0,0 +1,21 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
|
||||
export void f_f(uniform float RET[], uniform float aFOO[]) {
|
||||
float a = aFOO[programIndex];
|
||||
RET[programIndex] = a;
|
||||
|
||||
if (programIndex & 1) {
|
||||
foreach_active (i) {
|
||||
if (i == 1)
|
||||
continue;
|
||||
++RET[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = (1 + programIndex) + ((programIndex & 1) ? 1 : 0);
|
||||
--RET[1];
|
||||
}
|
||||
22
tests/foreach-active-5.ispc
Normal file
22
tests/foreach-active-5.ispc
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
|
||||
export void f_f(uniform float RET[], uniform float aFOO[]) {
|
||||
float a = aFOO[programIndex];
|
||||
RET[programIndex] = a;
|
||||
|
||||
if (programIndex & 1) {
|
||||
foreach_active (i) {
|
||||
if (i & 1)
|
||||
continue;
|
||||
|
||||
int * uniform null = 0;
|
||||
*null = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = (1 + programIndex);
|
||||
}
|
||||
Reference in New Issue
Block a user