This commit is contained in:
Evghenii
2014-01-28 12:20:12 +01:00
parent d9e8376209
commit 8677890fc1
2 changed files with 429 additions and 270 deletions

View File

@@ -1,255 +1,242 @@
#if 1
struct int2 { int x,y; };
struct int4 { int x,y,z,w; };
#else
typedef int<2> int2;
typedef int<4> int4;
#define NUMBITS 8
#define NUMDIGITS (1<<NUMBITS)
task
void computeHistogram(
const uniform int keysAll[],
const uniform int bit,
const uniform int numElements,
uniform int countsAll[],
uniform int countsGlobal[])
{
const uniform int blockIdx = taskIndex;
const uniform int numBlocks = taskCount;
const uniform int blockDim = (numElements + numBlocks - 1) / numBlocks;
const uniform int mask = (1 << NUMBITS) - 1;
const uniform int * uniform keys = keysAll + blockIdx*blockDim;
uniform int * uniform counts = countsAll + blockIdx*NUMDIGITS;
const uniform int nloc = min(numElements - blockIdx*blockDim, blockDim);
foreach (digit = 0 ... NUMDIGITS)
counts[digit] = 0;
foreach (i = 0 ... nloc)
{
const int key = mask & ((unsigned int)keys[i] >> bit);
atomic_add_local(&counts[key], 1);
}
foreach (digit = 0 ... NUMDIGITS)
atomic_add_global(&countsGlobal[digit], counts[digit]);
}
task
void sortPass(
uniform int keysAll[],
uniform int sorted[],
uniform int bit,
uniform int numElements,
uniform int digitOffsetsAll[],
uniform int sharedCounts[])
{
const uniform int blockIdx = taskIndex;
const uniform int numBlocks = taskCount;
const uniform int blockDim = (numElements + numBlocks - 1) / numBlocks;
const uniform int mask = (1 << NUMBITS) - 1;
uniform int * uniform localCounts = sharedCounts + blockIdx*NUMDIGITS;
const uniform int keyIndex = blockIdx * blockDim;
uniform int * uniform keys = keysAll + keyIndex;
uniform int * uniform digitOffsets = digitOffsetsAll + blockIdx*NUMDIGITS;
const uniform int nloc = min(numElements - keyIndex, blockDim);
foreach (i = 0 ... NUMDIGITS)
localCounts[i] = 0;
foreach (i = 0 ... nloc)
{
const int key = mask & ((unsigned int)keys[i] >> bit);
const int rel = localCounts[key];
const int scatter = rel + digitOffsets[key];
sorted [scatter] = keys[i];
localCounts[key] = 1 + rel;
}
}
task
void partialScanLocal(
uniform int excScanPtr[],
uniform int countsPtr[],
uniform int partialSum[])
{
const uniform int numBlocks = taskCount;
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (numBlocks+taskCount-1)/taskCount;
const uniform int bbeg = blockIdx * blockDim;
const uniform int bend = min(bbeg + blockDim, numBlocks);
foreach (digit = 0 ... NUMDIGITS)
{
uniform int * uniform excScanBlock = excScanPtr + bbeg*NUMDIGITS;
uniform int * uniform countsBlock = countsPtr + bbeg*NUMDIGITS;
int prev = bbeg == 0 ? excScanBlock[digit] : 0;
for (uniform int block = bbeg; block < bend; block++)
{
const int y = countsBlock[digit];
excScanBlock[digit] = prev;
prev += y;
excScanBlock += NUMDIGITS;
countsBlock += NUMDIGITS;
}
excScanBlock -= NUMDIGITS;
countsBlock -= NUMDIGITS;
partialSum[blockIdx*NUMDIGITS + digit] = excScanBlock[digit] + countsBlock[digit];
}
}
task
void partialScanGlobal(
const uniform int numBlocks,
uniform int partialSum[],
uniform int prefixSum[])
{
const int digit = taskIndex;
int carry = 0;
foreach (block = 0 ... numBlocks)
{
const int value = partialSum[block*NUMDIGITS + digit];
const int scan = exclusive_scan_add(value);
prefixSum[block*NUMDIGITS + digit] = value + carry;
carry = broadcast(scan+value, programCount-1);
}
}
task
void completeScanGlobal(
uniform int excScanAll[],
uniform int carryValue[])
{
const uniform int numBlocks = taskCount;
const uniform int blockIdx = taskIndex;
const uniform int blockDim = (numBlocks+taskCount-1)/taskCount;
const uniform int bbeg = blockIdx * blockDim;
const uniform int bend = min(bbeg + blockDim, numBlocks);
carryValue += blockIdx*NUMDIGITS;
foreach (digit = 0 ... NUMDIGITS)
{
const int carry = carryValue[digit];
uniform int * uniform excScanBlock = excScanAll + bbeg*NUMDIGITS;
for (uniform int block = bbeg; block < bend; block++, excScanBlock += NUMDIGITS)
excScanBlock[digit] += carry;
}
}
static
inline void radixExclusiveScan(
const uniform int numBlocks,
uniform int excScanPtr[],
uniform int countsPtr[],
uniform int partialSum[],
uniform int prefixSum[])
{
launch [numBlocks] partialScanLocal(excScanPtr, countsPtr, partialSum);
sync;
launch [NUMDIGITS] partialScanGlobal(numBlocks, partialSum, prefixSum);
sync;
launch [numBlocks] completeScanGlobal(excScanPtr, prefixSum);
sync;
}
export void radixSort(
const uniform int numElements,
uniform int keys[],
uniform int sorted[])
{
const uniform int numBlocks = num_cores()*2;
#ifdef __NVPTX__
assert((numBlocks & 3) == 0); /* task granularity on Kepler is 4 */
#endif
static int4 scan4(const int4 idata)
{
const int idx = programIndex;
const uniform int blockDim = (numElements + numBlocks - 1) / numBlocks;
int4 val4 = idata;
int sum[3];
sum[0] = val4.x;
sum[1] = val4.y + sum[0];
sum[2] = val4.z + sum[1];
int val = val4.w + sum[2];
val = exclusive_scan_add(val);
const uniform int nSharedCounts = NUMDIGITS*numBlocks;
const uniform int nCountsGlobal = NUMDIGITS;
const uniform int nExcScan = NUMDIGITS*numBlocks;
const uniform int nCountsBlock = NUMDIGITS*numBlocks;
const uniform int nPartialSum = NUMDIGITS*numBlocks;
const uniform int nPrefixSum = NUMDIGITS*numBlocks;
val4.x = val;
val4.y = val + sum[0];
val4.z = val + sum[1];
val4.w = val + sum[2];
const uniform int nalloc =
nSharedCounts +
nCountsGlobal +
nExcScan +
nCountsBlock +
nPartialSum +
nPrefixSum;
return val4;
}
uniform int * uniform mem_pool = uniform new uniform int[nalloc];
static int4 rank4(int4 preds)
{
const int localId = programIndex;
const uniform int localSize = programCount;
uniform int * uniform sharedCounts = mem_pool;
uniform int * uniform countsGlobal = sharedCounts + nSharedCounts;
uniform int * uniform excScan = countsGlobal + nCountsGlobal;
uniform int * uniform countsBlock = excScan + nExcScan;
uniform int * uniform partialSum = countsBlock + nCountsBlock;
uniform int * uniform prefixSum = partialSum + nPartialSum;
const int4 address = scan4(preds);
const int numtrue = broadcast(address.w + preds.w, localSize-1);
int4 rank;
const int idx = localId*4;
rank.x = (preds.x) ? address.x : numtrue + idx - address.x;
rank.y = (preds.y) ? address.y : numtrue + idx + 1 - address.y;
rank.z = (preds.z) ? address.z : numtrue + idx + 2 - address.z;
rank.w = (preds.w) ? address.w : numtrue + idx + 3 - address.w;
return rank;
}
static void radixSortBlockKeysOnly(int4 &key_inout, uniform int nbits, uniform int startbit)
{
const int localId = programIndex;
const uniform int localSize = programCount;
uniform int sMem[programCount*4];
int4 key = key_inout;
for (uniform int shift = startbit; shift < (startbit + nbits); ++shift)
for (uniform int bit = 0; bit < 32; bit += NUMBITS)
{
int4 lsb;
lsb.x = !((key.x >> shift) & 0x1);
lsb.y = !((key.y >> shift) & 0x1);
lsb.z = !((key.z >> shift) & 0x1);
lsb.w = !((key.w >> shift) & 0x1);
/* initialize histogram for each digit */
foreach (digit = 0 ... NUMDIGITS)
countsGlobal[digit] = 0;
const int4 r = rank4(lsb);
/* compute histogram for each digit */
launch [numBlocks] computeHistogram(keys, bit, numElements, countsBlock, countsGlobal);
sync;
// This arithmetic strides the ranks across 4 CTA_SIZE regions
sMem[(r.x & 3) * localSize + (r.x >> 2)] = key.x;
sMem[(r.y & 3) * localSize + (r.y >> 2)] = key.y;
sMem[(r.z & 3) * localSize + (r.z >> 2)] = key.z;
sMem[(r.w & 3) * localSize + (r.w >> 2)] = key.w;
/* exclusive scan on global histogram */
int carry = 0;
excScan[0] = 0;
foreach (digit = 0 ... NUMDIGITS)
{
const int value = countsGlobal[digit];
const int scan = exclusive_scan_add(value);
excScan[digit] = value + carry;
carry += broadcast(scan+value, programCount-1);
}
// The above allows us to read without 4-way bank conflicts:
key.x = sMem[localId ];
key.y = sMem[localId + localSize];
key.z = sMem[localId + 2 * localSize];
key.w = sMem[localId + 3 * localSize];
}
}
/* computing offsets for each digit */
radixExclusiveScan(numBlocks, excScan, countsBlock, partialSum, prefixSum);
task void radixSortBlocksKeysOnly(
uniform int keysIn[],
uniform int keysOut[],
uniform int nbits,
uniform int startbit,
uniform int numElements,
uniform int totalBlocks)
{
const int globalId = taskIndex * programCount + programIndex;
/* sorting */
launch [numBlocks]
sortPass(
keys,
sorted,
bit,
numElements,
excScan,
sharedCounts);
sync;
int4 key;
key.x = keysIn[4*globalId + 0];
key.y = keysIn[4*globalId + 1];
key.z = keysIn[4*globalId + 2];
key.w = keysIn[4*globalId + 3];
radixSortBlockKeysOnly(key, nbits, startbit);
keysOut[4*globalId+0] = key.x;
keysOut[4*globalId+1] = key.y;
keysOut[4*globalId+2] = key.z;
keysOut[4*globalId+3] = key.w;
}
//----------------------------------------------------------------------------
// Given an array with blocks sorted according to a 4-bit radix group, each
// block counts the number of keys that fall into each radix in the group, and
// finds the starting offset of each radix in the block. It then writes the radix
// counts to the counters array, and the starting offsets to the blockOffsets array.
//
// Template parameters are used to generate efficient code for various special cases
// For example, we have to handle arrays that are a multiple of the block size
// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
// CTAs are used.
//
// By persistent CTAs we mean that we launch only as many thread blocks as can
// be resident in the GPU and no more, rather than launching as many threads as
// we have elements. Persistent CTAs loop over blocks of elements until all work
// is complete. This can be faster in some cases. In our tests it is faster
// for large sorts (and the threshold is higher on compute version 1.1 and earlier
// GPUs than it is on compute version 1.2 GPUs.
//
//----------------------------------------------------------------------------
task void findRadixOffsets(
uniform int keys[],
uniform int counters[],
uniform int blockOffsets[],
uniform int startbit,
uniform int numElements,
uniform int totalBlocks)
{
uniform int sStartPointers[16];
const uniform int groupId = taskIndex;
const int localId = programIndex;
const uniform int groupSize = programCount;
const int globalId = taskIndex * programCount + programIndex;
int2 radix2;
radix2.x = keys[2*globalId + 0];
radix2.y = keys[2*globalId + 1];
uniform int sRadix1[4*programCount];
sRadix1[2 * localId] = (radix2.x >> startbit) & 0xF;
sRadix1[2 * localId + 1] = (radix2.y >> startbit) & 0xF;
// Finds the position where the sRadix1 entries differ and stores start
// index for each radix.
if(localId < 16)
sStartPointers[localId] = 0;
if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
sStartPointers[sRadix1[localId]] = localId;
if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1])
sStartPointers[sRadix1[localId + groupSize]] = localId + groupSize;
if(localId < 16)
blockOffsets[groupId*16 + localId] = sStartPointers[localId];
// Compute the sizes of each block.
if((localId > 0) && (sRadix1[localId] != sRadix1[localId - 1]) )
sStartPointers[sRadix1[localId - 1]] =
localId - sStartPointers[sRadix1[localId - 1]];
if(sRadix1[localId + groupSize] != sRadix1[localId + groupSize - 1] )
sStartPointers[sRadix1[localId + groupSize - 1]] =
localId + groupSize - sStartPointers[sRadix1[localId + groupSize - 1]];
if(localId == groupSize - 1)
sStartPointers[sRadix1[2 * groupSize - 1]] =
2 * groupSize - sStartPointers[sRadix1[2 * groupSize - 1]];
if(localId < 16)
counters[localId * totalBlocks + groupId] = sStartPointers[localId];
}
// a naive scan routine that works only for array that
// can fit into a single block, just for debugging purpose,
// not used in the sort now
task void scanNaive(
uniform int odata[],
uniform int idata[],
uniform int n)
{
if (programIndex < n)
odata[programIndex] = exclusive_scan_add(idata[programIndex]);
}
//----------------------------------------------------------------------------
// reorderData shuffles data in the array globally after the radix offsets
// have been found. On compute version 1.1 and earlier GPUs, this code depends
// on RadixSort::CTA_SIZE being 16 * number of radices (i.e. 16 * 2^nbits).
//
// On compute version 1.1 GPUs ("manualCoalesce=true") this function ensures
// that all writes are coalesced using extra work in the kernel. On later
// GPUs coalescing rules have been relaxed, so this extra overhead hurts
// performance. On these GPUs we set manualCoalesce=false and directly store
// the results.
//
// Template parameters are used to generate efficient code for various special cases
// For example, we have to handle arrays that are a multiple of the block size
// (fullBlocks) differently than arrays that are not. "loop" is used when persistent
// CTAs are used.
//
// By persistent CTAs we mean that we launch only as many thread blocks as can
// be resident in the GPU and no more, rather than launching as many threads as
// we have elements. Persistent CTAs loop over blocks of elements until all work
// is complete. This can be faster in some cases. In our tests it is faster
// for large sorts (and the threshold is higher on compute version 1.1 and earlier
// GPUs than it is on compute version 1.2 GPUs.
//----------------------------------------------------------------------------
task void reorderDataKeysOnly(
uniform int outKeys[],
uniform int keys[],
uniform int blockOffsets[],
uniform int offsets[],
uniform int sizes[],
uniform int startbit,
uniform int numElements,
uniform int totalBlocks)
{
uniform int sOffsets[16];
uniform int sBlockOffsets[16];
uniform int2 sKeys2[programCount];
uniform int * uniform sKeys1 = (uniform int * uniform)&sKeys2[0];
const uniform int groupId = taskIndex;
const int globalId = taskIndex*programCount + programIndex;
const int localId = programIndex;
const uniform int groupSize = programCount;
sKeys2[localId].x = keys[2*globalId + 0];
sKeys2[localId].y = keys[2*globalId + 1];
if(localId < 16)
{
sOffsets[localId] = offsets[localId * totalBlocks + groupId];
sBlockOffsets[localId] = blockOffsets[groupId * 16 + localId];
uniform int * uniform tmp = keys;
keys = sorted;
sorted = tmp;
}
int radix = (sKeys1[localId] >> startbit) & 0xF;
int globalOffset = sOffsets[radix] + localId - sBlockOffsets[radix];
if (globalOffset < numElements)
outKeys[globalOffset] = sKeys1[localId];
radix = (sKeys1[localId + groupSize] >> startbit) & 0xF;
globalOffset = sOffsets[radix] + localId + groupSize - sBlockOffsets[radix];
if (globalOffset < numElements)
outKeys[globalOffset] = sKeys1[localId + groupSize];
delete mem_pool;
}