working on deferred shading

This commit is contained in:
Evghenii
2013-11-10 12:10:10 +01:00
parent 1a37135f98
commit 78d509dba5
9 changed files with 1563 additions and 168 deletions

316
examples_cuda/deferred/main_cu.cpp Normal file → Executable file
View File

@@ -59,6 +59,222 @@
#include "kernels_ispc.h"
#include "../timing.h"
#include <sys/time.h>
static inline double rtc(void)
{
struct timeval Tvalue;
double etime;
struct timezone dummy;
gettimeofday(&Tvalue,&dummy);
etime = (double) Tvalue.tv_sec +
1.e-6*((double) Tvalue.tv_usec);
return etime;
}
/******************************/ #include <cassert>
#include <iostream>
#include <cuda.h>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
CUmodule cudaModule;
// in this branch we use compilation with parameters
const unsigned int jitNumOptions = 1;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void*[jitNumOptions];
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[0] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 64;
jitOptVals[0] = (void *)(size_t)jitRegCount;
#if 0
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
#endif
checkCudaErrors(cuModuleLoadDataEx(&cudaModule, module,jitNumOptions, jitOptions, (void **)jitOptVals));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,nbx,nby,nbz,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_EQUAL)); \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
((nbx-1)/(128/32)+1), (nby), (nbz), \
128, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C"
{
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
{
return NULL;
}
void CUDALaunch(
void **handlePtr,
const char * module_name,
const char * module_1,
const char * func_name,
void **func_args,
int countx, int county, int countz)
{
assert(module_name != NULL);
assert(module_1 != NULL);
assert(func_name != NULL);
assert(func_args != NULL);
#if 0
const char * module = module_1;
#else
const std::vector<char> module_str = readBinary("kernel.cubin");
const char * module = &module_str[0];
#endif
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args);
unloadModule(cudaModule);
}
void CUDASync(void *handle)
{
checkCudaErrors(cuStreamSynchronize(0));
}
void ISPCSync(void *handle)
{
checkCudaErrors(cuStreamSynchronize(0));
}
void CUDAFree(void *handle)
{
}
}
/******************************/
///////////////////////////////////////////////////////////////////////////
int main(int argc, char** argv) {
@@ -76,27 +292,112 @@ int main(int argc, char** argv) {
Framebuffer framebuffer(input->header.framebufferWidth,
input->header.framebufferHeight);
InitDynamicC(input);
// InitDynamicC(input);
#if 0
#ifdef __cilk
InitDynamicCilk(input);
#endif // __cilk
#endif
/*******************/
createContext();
/*******************/
devicePtr d_header = deviceMalloc(sizeof(ispc::InputHeader));
devicePtr d_arrays = deviceMalloc(sizeof(ispc::InputDataArrays));
const int buffsize = input->header.framebufferWidth*input->header.framebufferHeight;
devicePtr d_r = deviceMalloc(buffsize);
devicePtr d_g = deviceMalloc(buffsize);
devicePtr d_b = deviceMalloc(buffsize);
for (int i = 0; i < buffsize; i++)
framebuffer.r[i] = framebuffer.g[i] = framebuffer.b[i] = 0;
ispc::InputDataArrays dh_arrays;
{
devicePtr d_chunk = deviceMalloc(input->header.inputDataChunkSize);
memcpyH2D(d_chunk, input->chunk, input->header.inputDataChunkSize);
dh_arrays.zBuffer = (float*)(d_chunk + input->header.inputDataArrayOffsets[idaZBuffer]);
dh_arrays.normalEncoded_x =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaNormalEncoded_x]);
fprintf(stderr, "%p %p \n",
dh_arrays.zBuffer, dh_arrays.normalEncoded_x);
fprintf(stderr, " diff= %d %d \n",
input->header.inputDataArrayOffsets[idaZBuffer],
input->header.inputDataArrayOffsets[idaNormalEncoded_x]);
dh_arrays.normalEncoded_y =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaNormalEncoded_y]);
dh_arrays.specularAmount =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaSpecularAmount]);
dh_arrays.specularPower =
(uint16_t *)(d_chunk+input->header.inputDataArrayOffsets[idaSpecularPower]);
dh_arrays.albedo_x =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_x]);
dh_arrays.albedo_y =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_y]);
dh_arrays.albedo_z =
(uint8_t *)(d_chunk+input->header.inputDataArrayOffsets[idaAlbedo_z]);
dh_arrays.lightPositionView_x =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_x]);
dh_arrays.lightPositionView_y =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_y]);
dh_arrays.lightPositionView_z =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightPositionView_z]);
dh_arrays.lightAttenuationBegin =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightAttenuationBegin]);
dh_arrays.lightColor_x =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_x]);
dh_arrays.lightColor_y =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_y]);
dh_arrays.lightColor_z =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightColor_z]);
dh_arrays.lightAttenuationEnd =
(float *)(d_chunk+input->header.inputDataArrayOffsets[idaLightAttenuationEnd]);
}
memcpyH2D(d_header, &input->header, sizeof(ispc::InputHeader));
memcpyH2D(d_arrays, &dh_arrays, sizeof(ispc::InputDataArrays));
memcpyH2D(d_r, framebuffer.r, buffsize);
memcpyH2D(d_g, framebuffer.g, buffsize);
memcpyH2D(d_b, framebuffer.b, buffsize);
int nframes = 5;
double ispcCycles = 1e30;
for (int i = 0; i < 5; ++i) {
framebuffer.clear();
reset_and_start_timer();
const double t0 = rtc();
for (int j = 0; j < nframes; ++j)
ispc::RenderStatic(input->header, input->arrays,
VISUALIZE_LIGHT_COUNT,
framebuffer.r, framebuffer.g, framebuffer.b);
double mcycles = get_elapsed_mcycles() / nframes;
ispc::RenderStatic(
(ispc::InputHeader*)d_header,
(ispc::InputDataArrays*)d_arrays,
input->header,
VISUALIZE_LIGHT_COUNT,
(uint8_t*)d_r,
(uint8_t*)d_g,
(uint8_t*)d_b);
double mcycles = (rtc() - t0) / nframes;
ispcCycles = std::min(ispcCycles, mcycles);
}
memcpyD2H(framebuffer.r, d_r, buffsize);
memcpyD2H(framebuffer.g, d_g, buffsize);
memcpyD2H(framebuffer.b, d_b, buffsize);
printf("[ispc static + tasks]:\t\t[%.3f] million cycles to render "
"%d x %d image\n", ispcCycles,
input->header.framebufferWidth, input->header.framebufferHeight);
WriteFrame("deferred-ispc-static.ppm", input, framebuffer);
WriteFrame("deferred-cuda.ppm", input, framebuffer);
/*******************/
destroyContext();
/*******************/
return 0;
#if 0
#ifdef __cilk
double dynamicCilkCycles = 1e30;
@@ -132,6 +433,7 @@ int main(int argc, char** argv) {
#else
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n", serialCycles/ispcCycles);
#endif // __cilk
#endif
DeleteInputData(input);