workingon rt example
This commit is contained in:
2
examples_ptx/rt/.gitignore
vendored
Normal file
2
examples_ptx/rt/.gitignore
vendored
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
rt
|
||||||
|
*.ppm
|
||||||
8
examples_ptx/rt/Makefile_cpu
Normal file
8
examples_ptx/rt/Makefile_cpu
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
EXAMPLE=rt
|
||||||
|
CPP_SRC=rt.cpp rt_serial.cpp
|
||||||
|
ISPC_SRC=rt.ispc
|
||||||
|
ISPC_IA_TARGETS=avx1-i32x8
|
||||||
|
ISPC_ARM_TARGETS=neon
|
||||||
|
|
||||||
|
include ../common.mk
|
||||||
BIN
examples_ptx/rt/cornell.bvh
Normal file
BIN
examples_ptx/rt/cornell.bvh
Normal file
Binary file not shown.
BIN
examples_ptx/rt/cornell.camera
Normal file
BIN
examples_ptx/rt/cornell.camera
Normal file
Binary file not shown.
298
examples_ptx/rt/rt.cpp
Normal file
298
examples_ptx/rt/rt.cpp
Normal file
@@ -0,0 +1,298 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) 2010-2011, Intel Corporation
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Intel Corporation nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||||
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||||
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
#define _CRT_SECURE_NO_WARNINGS
|
||||||
|
#define NOMINMAX
|
||||||
|
#pragma warning (disable: 4244)
|
||||||
|
#pragma warning (disable: 4305)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cmath>
|
||||||
|
#include <algorithm>
|
||||||
|
#include <cassert>
|
||||||
|
#include <cstring>
|
||||||
|
#include <sys/types.h>
|
||||||
|
#include "../timing.h"
|
||||||
|
#include "../ispc_malloc.h"
|
||||||
|
#include "rt_ispc.h"
|
||||||
|
|
||||||
|
using namespace ispc;
|
||||||
|
|
||||||
|
typedef unsigned int uint;
|
||||||
|
|
||||||
|
extern void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
|
||||||
|
const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4], float image[],
|
||||||
|
int id[], const LinearBVHNode nodes[],
|
||||||
|
const Triangle triangles[]);
|
||||||
|
|
||||||
|
|
||||||
|
static void writeImage(int *idImage, float *depthImage, int width, int height,
|
||||||
|
const char *filename) {
|
||||||
|
FILE *f = fopen(filename, "wb");
|
||||||
|
if (!f) {
|
||||||
|
perror(filename);
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(f, "P6\n%d %d\n255\n", width, height);
|
||||||
|
for (int y = 0; y < height; ++y) {
|
||||||
|
for (int x = 0; x < width; ++x) {
|
||||||
|
// use the bits from the object id of the hit object to make a
|
||||||
|
// random color
|
||||||
|
int id = idImage[y * width + x];
|
||||||
|
unsigned char r = 0, g = 0, b = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < 8; ++i) {
|
||||||
|
// extract bit 3*i for red, 3*i+1 for green, 3*i+2 for blue
|
||||||
|
int rbit = (id & (1 << (3*i))) >> (3*i);
|
||||||
|
int gbit = (id & (1 << (3*i+1))) >> (3*i+1);
|
||||||
|
int bbit = (id & (1 << (3*i+2))) >> (3*i+2);
|
||||||
|
// and then set the bits of the colors starting from the
|
||||||
|
// high bits...
|
||||||
|
r |= rbit << (7-i);
|
||||||
|
g |= gbit << (7-i);
|
||||||
|
b |= bbit << (7-i);
|
||||||
|
}
|
||||||
|
fputc(r, f);
|
||||||
|
fputc(g, f);
|
||||||
|
fputc(b, f);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fclose(f);
|
||||||
|
printf("Wrote image file %s\n", filename);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static void usage() {
|
||||||
|
fprintf(stderr, "rt <scene name base> [--scale=<factor>] [ispc iterations] [tasks iterations] [serial iterations]\n");
|
||||||
|
exit(1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
int main(int argc, char *argv[]) {
|
||||||
|
static unsigned int test_iterations[] = {3, 7, 1};
|
||||||
|
float scale = 1.f;
|
||||||
|
const char *filename = NULL;
|
||||||
|
if (argc < 2) usage();
|
||||||
|
filename = argv[1];
|
||||||
|
if (argc > 2) {
|
||||||
|
if (strncmp(argv[2], "--scale=", 8) == 0) {
|
||||||
|
scale = atof(argv[2] + 8);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if ((argc == 6) || (argc == 5)) {
|
||||||
|
for (int i = 0; i < 3; i++) {
|
||||||
|
test_iterations[i] = atoi(argv[argc - 3 + i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#define READ(var, n) \
|
||||||
|
if (fread(&(var), sizeof(var), n, f) != (unsigned int)n) { \
|
||||||
|
fprintf(stderr, "Unexpected EOF reading scene file\n"); \
|
||||||
|
return 1; \
|
||||||
|
} else /* eat ; */
|
||||||
|
|
||||||
|
//
|
||||||
|
// Read the camera specification information from the camera file
|
||||||
|
//
|
||||||
|
char fnbuf[1024];
|
||||||
|
sprintf(fnbuf, "%s.camera", filename);
|
||||||
|
FILE *f = fopen(fnbuf, "rb");
|
||||||
|
if (!f) {
|
||||||
|
perror(fnbuf);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Nothing fancy, and trouble if we run on a big-endian system, just
|
||||||
|
// fread in the bits
|
||||||
|
//
|
||||||
|
int baseWidth, baseHeight;
|
||||||
|
#if 0
|
||||||
|
float camera2world[4][4], raster2camera[4][4];
|
||||||
|
#else
|
||||||
|
float *camera2world_ispc, *raster2camera_ispc;
|
||||||
|
ispc_malloc((void**)&camera2world_ispc, 4*4*sizeof(float));
|
||||||
|
ispc_malloc((void**)&raster2camera_ispc, 4*4*sizeof(float));
|
||||||
|
float (*camera2world )[4] = (float (*)[4])camera2world_ispc;
|
||||||
|
float (*raster2camera)[4] = (float (*)[4])raster2camera_ispc;
|
||||||
|
#endif
|
||||||
|
READ(baseWidth, 1);
|
||||||
|
READ(baseHeight, 1);
|
||||||
|
READ(camera2world[0][0], 16);
|
||||||
|
READ(raster2camera[0][0], 16);
|
||||||
|
|
||||||
|
//
|
||||||
|
// Read in the serialized BVH
|
||||||
|
//
|
||||||
|
sprintf(fnbuf, "%s.bvh", filename);
|
||||||
|
f = fopen(fnbuf, "rb");
|
||||||
|
if (!f) {
|
||||||
|
perror(fnbuf);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// The BVH file starts with an int that gives the total number of BVH
|
||||||
|
// nodes
|
||||||
|
uint nNodes;
|
||||||
|
READ(nNodes, 1);
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
LinearBVHNode *nodes = new LinearBVHNode[nNodes];
|
||||||
|
#else
|
||||||
|
LinearBVHNode *nodes;
|
||||||
|
ispc_malloc((void**)&nodes, nNodes*sizeof(LinearBVHNode));
|
||||||
|
#endif
|
||||||
|
for (unsigned int i = 0; i < nNodes; ++i) {
|
||||||
|
// Each node is 6x floats for a boox, then an integer for an offset
|
||||||
|
// to the second child node, then an integer that encodes the type
|
||||||
|
// of node, the total number of int it if a leaf node, etc.
|
||||||
|
float b[6];
|
||||||
|
READ(b[0], 6);
|
||||||
|
nodes[i].bounds[0][0] = b[0];
|
||||||
|
nodes[i].bounds[0][1] = b[1];
|
||||||
|
nodes[i].bounds[0][2] = b[2];
|
||||||
|
nodes[i].bounds[1][0] = b[3];
|
||||||
|
nodes[i].bounds[1][1] = b[4];
|
||||||
|
nodes[i].bounds[1][2] = b[5];
|
||||||
|
READ(nodes[i].offset, 1);
|
||||||
|
READ(nodes[i].nPrimitives, 1);
|
||||||
|
READ(nodes[i].splitAxis, 1);
|
||||||
|
READ(nodes[i].pad, 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// And then read the triangles
|
||||||
|
uint nTris;
|
||||||
|
READ(nTris, 1);
|
||||||
|
Triangle *triangles = new Triangle[nTris];
|
||||||
|
for (uint i = 0; i < nTris; ++i) {
|
||||||
|
// 9x floats for the 3 vertices
|
||||||
|
float v[9];
|
||||||
|
READ(v[0], 9);
|
||||||
|
float *vp = v;
|
||||||
|
for (int j = 0; j < 3; ++j) {
|
||||||
|
triangles[i].p[j][0] = *vp++;
|
||||||
|
triangles[i].p[j][1] = *vp++;
|
||||||
|
triangles[i].p[j][2] = *vp++;
|
||||||
|
}
|
||||||
|
// And create an object id
|
||||||
|
triangles[i].id = i+1;
|
||||||
|
}
|
||||||
|
fclose(f);
|
||||||
|
|
||||||
|
int height = int(baseHeight * scale);
|
||||||
|
int width = int(baseWidth * scale);
|
||||||
|
|
||||||
|
// allocate images; one to hold hit object ids, one to hold depth to
|
||||||
|
// the first interseciton
|
||||||
|
#if 0
|
||||||
|
int *id = new int[width*height];
|
||||||
|
float *image = new float[width*height];
|
||||||
|
#else
|
||||||
|
int *id;
|
||||||
|
float *image;
|
||||||
|
ispc_malloc((void**)&id, sizeof( int)*width*height);
|
||||||
|
ispc_malloc((void**)&image, sizeof(float)*width*height);
|
||||||
|
#endif
|
||||||
|
//
|
||||||
|
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||||
|
//
|
||||||
|
#ifndef _CUDA_
|
||||||
|
double minTimeISPC = 1e30;
|
||||||
|
for (int i = 0; i < test_iterations[0]; ++i) {
|
||||||
|
reset_and_start_timer();
|
||||||
|
raytrace_ispc(width, height, baseWidth, baseHeight, raster2camera,
|
||||||
|
camera2world, image, id, nodes, triangles);
|
||||||
|
double dt = get_elapsed_msec();
|
||||||
|
printf("@time of ISPC run:\t\t\t[%.3f] msec\n", dt);
|
||||||
|
minTimeISPC = std::min(dt, minTimeISPC);
|
||||||
|
}
|
||||||
|
printf("[rt ispc, 1 core]:\t\t[%.3f] msec for %d x %d image\n",
|
||||||
|
minTimeISPC, width, height);
|
||||||
|
|
||||||
|
writeImage(id, image, width, height, "rt-ispc-1core.ppm");
|
||||||
|
#endif
|
||||||
|
|
||||||
|
memset(id, 0, width*height*sizeof(int));
|
||||||
|
memset(image, 0, width*height*sizeof(float));
|
||||||
|
|
||||||
|
//
|
||||||
|
// Run 3 iterations with ispc + 1 core, record the minimum time
|
||||||
|
//
|
||||||
|
double minTimeISPCtasks = 1e30;
|
||||||
|
for (int i = 0; i < test_iterations[1]; ++i) {
|
||||||
|
reset_and_start_timer();
|
||||||
|
raytrace_ispc_tasks(width, height, baseWidth, baseHeight, raster2camera,
|
||||||
|
camera2world, image, id, nodes, triangles);
|
||||||
|
double dt = get_elapsed_msec();
|
||||||
|
printf("@time of ISPC + TASKS run:\t\t\t[%.3f] msec\n", dt);
|
||||||
|
minTimeISPCtasks = std::min(dt, minTimeISPCtasks);
|
||||||
|
}
|
||||||
|
printf("[rt ispc + tasks]:\t\t[%.3f] msec for %d x %d image\n",
|
||||||
|
minTimeISPCtasks, width, height);
|
||||||
|
|
||||||
|
writeImage(id, image, width, height, "rt-ispc-tasks.ppm");
|
||||||
|
|
||||||
|
memset(id, 0, width*height*sizeof(int));
|
||||||
|
memset(image, 0, width*height*sizeof(float));
|
||||||
|
|
||||||
|
//
|
||||||
|
// And 3 iterations with the serial implementation, reporting the
|
||||||
|
// minimum time.
|
||||||
|
//
|
||||||
|
double minTimeSerial = 1e30;
|
||||||
|
for (int i = 0; i < test_iterations[2]; ++i) {
|
||||||
|
reset_and_start_timer();
|
||||||
|
raytrace_serial(width, height, baseWidth, baseHeight, raster2camera,
|
||||||
|
camera2world, image, id, nodes, triangles);
|
||||||
|
double dt = get_elapsed_msec();
|
||||||
|
printf("@time of serial run:\t\t\t[%.3f] msec\n", dt);
|
||||||
|
minTimeSerial = std::min(dt, minTimeSerial);
|
||||||
|
}
|
||||||
|
printf("[rt serial]:\t\t\t[%.3f] msec for %d x %d image\n",
|
||||||
|
minTimeSerial, width, height);
|
||||||
|
#ifndef _CUDA_
|
||||||
|
printf("\t\t\t\t(%.2fx speedup from ISPC, %.2fx speedup from ISPC + tasks)\n",
|
||||||
|
minTimeSerial / minTimeISPC, minTimeSerial / minTimeISPCtasks);
|
||||||
|
#else
|
||||||
|
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n",
|
||||||
|
minTimeSerial / minTimeISPCtasks);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
writeImage(id, image, width, height, "rt-serial.ppm");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
359
examples_ptx/rt/rt.cu
Normal file
359
examples_ptx/rt/rt.cu
Normal file
@@ -0,0 +1,359 @@
|
|||||||
|
#define programCount 32
|
||||||
|
#define programIndex (threadIdx.x & 31)
|
||||||
|
#define taskIndex (blockIdx.x*4 + (threadIdx.x >> 5))
|
||||||
|
#define taskCount (gridDim.x*4)
|
||||||
|
#define warpIdx (threadIdx.x >> 5)
|
||||||
|
|
||||||
|
#define float3 Float3
|
||||||
|
struct Float3
|
||||||
|
{
|
||||||
|
float x,y,z;
|
||||||
|
__device__ friend Float3 operator+(const Float3 a, const Float3 b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a.x+b.x;
|
||||||
|
c.y = a.y+b.y;
|
||||||
|
c.z = a.z+b.z;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
__device__ friend Float3 operator-(const Float3 a, const Float3 b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a.x-b.x;
|
||||||
|
c.y = a.y-b.y;
|
||||||
|
c.z = a.z-b.z;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
__device__ friend Float3 operator/(const Float3 a, const Float3 b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a.x/b.x;
|
||||||
|
c.y = a.y/b.y;
|
||||||
|
c.z = a.z/b.z;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
__device__ friend Float3 operator/(const float a, const Float3 b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a/b.x;
|
||||||
|
c.y = a/b.y;
|
||||||
|
c.z = a/b.z;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
__device__ friend Float3 operator*(const Float3 a, const Float3 b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a.x*b.x;
|
||||||
|
c.y = a.y*b.y;
|
||||||
|
c.z = a.z*b.z;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
__device__ friend Float3 operator*(const Float3 a, const float b)
|
||||||
|
{
|
||||||
|
Float3 c;
|
||||||
|
c.x = a.x*b;
|
||||||
|
c.y = a.y*b;
|
||||||
|
c.z = a.z*b;
|
||||||
|
return c;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
#define int8 char
|
||||||
|
#define int16 short
|
||||||
|
|
||||||
|
struct Ray {
|
||||||
|
float3 origin, dir, invDir;
|
||||||
|
unsigned int dirIsNeg0, dirIsNeg1, dirIsNeg2;
|
||||||
|
float mint, maxt;
|
||||||
|
int hitId;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Triangle {
|
||||||
|
float p[3][4];
|
||||||
|
int id;
|
||||||
|
int pad[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct LinearBVHNode {
|
||||||
|
float bounds[2][3];
|
||||||
|
unsigned int offset; // num primitives for leaf, second child for interior
|
||||||
|
unsigned int8 nPrimitives;
|
||||||
|
unsigned int8 splitAxis;
|
||||||
|
unsigned int16 pad;
|
||||||
|
};
|
||||||
|
|
||||||
|
__device__
|
||||||
|
static inline float3 Cross(const float3 v1, const float3 v2) {
|
||||||
|
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
|
||||||
|
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
|
||||||
|
float3 ret;
|
||||||
|
ret.x = (v1y * v2z) - (v1z * v2y);
|
||||||
|
ret.y = (v1z * v2x) - (v1x * v2z);
|
||||||
|
ret.z = (v1x * v2y) - (v1y * v2x);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__
|
||||||
|
static inline float Dot(const float3 a, const float3 b) {
|
||||||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__
|
||||||
|
inline
|
||||||
|
static void generateRay( const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float x, float y, Ray &ray) {
|
||||||
|
ray.mint = 0.f;
|
||||||
|
ray.maxt = 1e30f;
|
||||||
|
|
||||||
|
ray.hitId = 0;
|
||||||
|
|
||||||
|
// transform raster coordinate (x, y, 0) to camera space
|
||||||
|
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
|
||||||
|
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
|
||||||
|
float camz = raster2camera[2][3];
|
||||||
|
float camw = raster2camera[3][3];
|
||||||
|
camx /= camw;
|
||||||
|
camy /= camw;
|
||||||
|
camz /= camw;
|
||||||
|
|
||||||
|
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy +
|
||||||
|
camera2world[0][2] * camz;
|
||||||
|
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy +
|
||||||
|
camera2world[1][2] * camz;
|
||||||
|
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy +
|
||||||
|
camera2world[2][2] * camz;
|
||||||
|
|
||||||
|
ray.origin.x = camera2world[0][3] / camera2world[3][3];
|
||||||
|
ray.origin.y = camera2world[1][3] / camera2world[3][3];
|
||||||
|
ray.origin.z = camera2world[2][3] / camera2world[3][3];
|
||||||
|
|
||||||
|
ray.invDir = 1.f / ray.dir;
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
#else
|
||||||
|
ray.dirIsNeg0 = any(ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg1 = any(ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg2 = any(ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__
|
||||||
|
inline
|
||||||
|
static bool BBoxIntersect(const float bounds[2][3],
|
||||||
|
const Ray &ray) {
|
||||||
|
float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
|
||||||
|
float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
|
||||||
|
float t0 = ray.mint, t1 = ray.maxt;
|
||||||
|
|
||||||
|
// Check all three axis-aligned slabs. Don't try to early out; it's
|
||||||
|
// not worth the trouble
|
||||||
|
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
|
||||||
|
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
|
||||||
|
if (tNear.x > tFar.x) {
|
||||||
|
float tmp = tNear.x;
|
||||||
|
tNear.x = tFar.x;
|
||||||
|
tFar.x = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.x, t0);
|
||||||
|
t1 = min(tFar.x, t1);
|
||||||
|
|
||||||
|
if (tNear.y > tFar.y) {
|
||||||
|
float tmp = tNear.y;
|
||||||
|
tNear.y = tFar.y;
|
||||||
|
tFar.y = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.y, t0);
|
||||||
|
t1 = min(tFar.y, t1);
|
||||||
|
|
||||||
|
if (tNear.z > tFar.z) {
|
||||||
|
float tmp = tNear.z;
|
||||||
|
tNear.z = tFar.z;
|
||||||
|
tFar.z = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.z, t0);
|
||||||
|
t1 = min(tFar.z, t1);
|
||||||
|
|
||||||
|
return (t0 <= t1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
__device__
|
||||||
|
inline
|
||||||
|
static bool TriIntersect(const Triangle &tri, Ray &ray) {
|
||||||
|
float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
|
||||||
|
float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
|
||||||
|
float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
|
||||||
|
float3 e1 = p1 - p0;
|
||||||
|
float3 e2 = p2 - p0;
|
||||||
|
|
||||||
|
float3 s1 = Cross(ray.dir, e2);
|
||||||
|
float divisor = Dot(s1, e1);
|
||||||
|
bool hit = true;
|
||||||
|
|
||||||
|
if (divisor == 0.)
|
||||||
|
hit = false;
|
||||||
|
float invDivisor = 1.f / divisor;
|
||||||
|
|
||||||
|
// Compute first barycentric coordinate
|
||||||
|
float3 d = ray.origin - p0;
|
||||||
|
float b1 = Dot(d, s1) * invDivisor;
|
||||||
|
if (b1 < 0. || b1 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute second barycentric coordinate
|
||||||
|
float3 s2 = Cross(d, e1);
|
||||||
|
float b2 = Dot(ray.dir, s2) * invDivisor;
|
||||||
|
if (b2 < 0. || b1 + b2 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute _t_ to intersection point
|
||||||
|
float t = Dot(e2, s2) * invDivisor;
|
||||||
|
if (t < ray.mint || t > ray.maxt)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
if (hit) {
|
||||||
|
ray.maxt = t;
|
||||||
|
ray.hitId = tri.id;
|
||||||
|
}
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__
|
||||||
|
inline
|
||||||
|
bool BVHIntersect(const LinearBVHNode nodes[],
|
||||||
|
const Triangle tris[], Ray &r,
|
||||||
|
int todo[]) {
|
||||||
|
Ray ray = r;
|
||||||
|
bool hit = false;
|
||||||
|
// Follow ray through BVH nodes to find primitive intersections
|
||||||
|
int todoOffset = 0, nodeNum = 0;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
// Check ray against BVH node
|
||||||
|
LinearBVHNode node = nodes[nodeNum];
|
||||||
|
if (any(BBoxIntersect(node.bounds, ray))) {
|
||||||
|
unsigned int nPrimitives = node.nPrimitives;
|
||||||
|
if (nPrimitives > 0) {
|
||||||
|
// Intersect ray with primitives in leaf BVH node
|
||||||
|
unsigned int primitivesOffset = node.offset;
|
||||||
|
for ( unsigned int i = 0; i < nPrimitives; ++i) {
|
||||||
|
if (TriIntersect(tris[primitivesOffset+i], ray))
|
||||||
|
hit = true;
|
||||||
|
}
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Put far BVH node on _todo_ stack, advance to near node
|
||||||
|
int dirIsNeg;
|
||||||
|
if (node.splitAxis == 0) dirIsNeg = r.dirIsNeg0;
|
||||||
|
if (node.splitAxis == 1) dirIsNeg = r.dirIsNeg1;
|
||||||
|
if (node.splitAxis == 2) dirIsNeg = r.dirIsNeg2;
|
||||||
|
if (dirIsNeg) {
|
||||||
|
todo[todoOffset++] = nodeNum + 1;
|
||||||
|
nodeNum = node.offset;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
todo[todoOffset++] = node.offset;
|
||||||
|
nodeNum = nodeNum + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
r.maxt = ray.maxt;
|
||||||
|
r.hitId = ray.hitId;
|
||||||
|
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
__device__
|
||||||
|
inline
|
||||||
|
static void raytrace_tile( int x0, int x1,
|
||||||
|
int y0, int y1,
|
||||||
|
int width, int height,
|
||||||
|
int baseWidth, int baseHeight,
|
||||||
|
const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float image[], int id[],
|
||||||
|
const LinearBVHNode nodes[],
|
||||||
|
const Triangle triangles[]) {
|
||||||
|
float widthScale = (float)(baseWidth) / (float)(width);
|
||||||
|
float heightScale = (float)(baseHeight) / (float)(height);
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
int * todo = new int[64];
|
||||||
|
#define ALLOC
|
||||||
|
#else
|
||||||
|
int todo[64];
|
||||||
|
#endif
|
||||||
|
|
||||||
|
for (int y = y0 ;y < y1; y++)
|
||||||
|
for (int x = x0 + programIndex; x < x1; x += programCount)
|
||||||
|
if (x < x1)
|
||||||
|
{
|
||||||
|
Ray ray;
|
||||||
|
generateRay(raster2camera, camera2world, x*widthScale,
|
||||||
|
y*heightScale, ray);
|
||||||
|
BVHIntersect(nodes, triangles, ray, todo);
|
||||||
|
|
||||||
|
int offset = y * width + x;
|
||||||
|
image[offset] = ray.maxt;
|
||||||
|
id[offset] = ray.hitId;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef ALLOC
|
||||||
|
delete todo;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
__global__
|
||||||
|
void raytrace_tile_task( int width, int height,
|
||||||
|
int baseWidth, int baseHeight,
|
||||||
|
const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float image[], int id[],
|
||||||
|
const LinearBVHNode nodes[],
|
||||||
|
const Triangle triangles[]) {
|
||||||
|
int dx = 64, dy = 8; // must match dx, dy below
|
||||||
|
int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
int x0 = (taskIndex % xBuckets) * dx;
|
||||||
|
int x1 = min(x0 + dx, width);
|
||||||
|
int y0 = (taskIndex / xBuckets) * dy;
|
||||||
|
int y1 = min(y0 + dy, height);
|
||||||
|
|
||||||
|
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world, image,
|
||||||
|
id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
extern "C" __global__ void raytrace_ispc_tasks( int width, int height,
|
||||||
|
int baseWidth, int baseHeight,
|
||||||
|
const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float image[], int id[],
|
||||||
|
const LinearBVHNode nodes[],
|
||||||
|
const Triangle triangles[]) {
|
||||||
|
int dx = 64, dy = 8;
|
||||||
|
int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
int yBuckets = (height + (dy-1)) / dy;
|
||||||
|
int nTasks = xBuckets * yBuckets;
|
||||||
|
if (programIndex == 0)
|
||||||
|
raytrace_tile_task<<<(nTasks+4-1)/4,128>>>(width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world,
|
||||||
|
image, id, nodes, triangles);
|
||||||
|
cudaDeviceSynchronize();
|
||||||
|
}
|
||||||
|
|
||||||
311
examples_ptx/rt/rt.ispc
Normal file
311
examples_ptx/rt/rt.ispc
Normal file
@@ -0,0 +1,311 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) 2010-2011, Intel Corporation
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Intel Corporation nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||||
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||||
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define bool int
|
||||||
|
|
||||||
|
typedef float<3> float3;
|
||||||
|
|
||||||
|
struct Ray {
|
||||||
|
float3 origin, dir, invDir;
|
||||||
|
uniform unsigned int dirIsNeg[3];
|
||||||
|
float mint, maxt;
|
||||||
|
int hitId;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Triangle {
|
||||||
|
float p[3][4];
|
||||||
|
int id;
|
||||||
|
int pad[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct LinearBVHNode {
|
||||||
|
float bounds[2][3];
|
||||||
|
unsigned int offset; // num primitives for leaf, second child for interior
|
||||||
|
unsigned int8 nPrimitives;
|
||||||
|
unsigned int8 splitAxis;
|
||||||
|
unsigned int16 pad;
|
||||||
|
};
|
||||||
|
|
||||||
|
static inline float3 Cross(const float3 v1, const float3 v2) {
|
||||||
|
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
|
||||||
|
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
|
||||||
|
float3 ret;
|
||||||
|
ret.x = (v1y * v2z) - (v1z * v2y);
|
||||||
|
ret.y = (v1z * v2x) - (v1x * v2z);
|
||||||
|
ret.z = (v1x * v2y) - (v1y * v2x);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline float Dot(const float3 a, const float3 b) {
|
||||||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static void generateRay(uniform const float raster2camera[4][4],
|
||||||
|
uniform const float camera2world[4][4],
|
||||||
|
float x, float y, Ray &ray) {
|
||||||
|
ray.mint = 0.f;
|
||||||
|
ray.maxt = 1e30f;
|
||||||
|
|
||||||
|
ray.hitId = 0;
|
||||||
|
|
||||||
|
// transform raster coordinate (x, y, 0) to camera space
|
||||||
|
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
|
||||||
|
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
|
||||||
|
float camz = raster2camera[2][3];
|
||||||
|
float camw = raster2camera[3][3];
|
||||||
|
camx /= camw;
|
||||||
|
camy /= camw;
|
||||||
|
camz /= camw;
|
||||||
|
|
||||||
|
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy +
|
||||||
|
camera2world[0][2] * camz;
|
||||||
|
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy +
|
||||||
|
camera2world[1][2] * camz;
|
||||||
|
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy +
|
||||||
|
camera2world[2][2] * camz;
|
||||||
|
|
||||||
|
ray.origin.x = camera2world[0][3] / camera2world[3][3];
|
||||||
|
ray.origin.y = camera2world[1][3] / camera2world[3][3];
|
||||||
|
ray.origin.z = camera2world[2][3] / camera2world[3][3];
|
||||||
|
|
||||||
|
ray.invDir = 1.f / ray.dir;
|
||||||
|
|
||||||
|
ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static bool BBoxIntersect(const uniform float bounds[2][3],
|
||||||
|
const Ray &ray) {
|
||||||
|
uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
|
||||||
|
uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
|
||||||
|
float t0 = ray.mint, t1 = ray.maxt;
|
||||||
|
|
||||||
|
// Check all three axis-aligned slabs. Don't try to early out; it's
|
||||||
|
// not worth the trouble
|
||||||
|
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
|
||||||
|
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
|
||||||
|
if (tNear.x > tFar.x) {
|
||||||
|
float tmp = tNear.x;
|
||||||
|
tNear.x = tFar.x;
|
||||||
|
tFar.x = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.x, t0);
|
||||||
|
t1 = min(tFar.x, t1);
|
||||||
|
|
||||||
|
if (tNear.y > tFar.y) {
|
||||||
|
float tmp = tNear.y;
|
||||||
|
tNear.y = tFar.y;
|
||||||
|
tFar.y = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.y, t0);
|
||||||
|
t1 = min(tFar.y, t1);
|
||||||
|
|
||||||
|
if (tNear.z > tFar.z) {
|
||||||
|
float tmp = tNear.z;
|
||||||
|
tNear.z = tFar.z;
|
||||||
|
tFar.z = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.z, t0);
|
||||||
|
t1 = min(tFar.z, t1);
|
||||||
|
|
||||||
|
return (t0 <= t1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
|
||||||
|
uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
|
||||||
|
uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
|
||||||
|
uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
|
||||||
|
uniform float3 e1 = p1 - p0;
|
||||||
|
uniform float3 e2 = p2 - p0;
|
||||||
|
|
||||||
|
float3 s1 = Cross(ray.dir, e2);
|
||||||
|
float divisor = Dot(s1, e1);
|
||||||
|
bool hit = true;
|
||||||
|
|
||||||
|
if (divisor == 0.)
|
||||||
|
hit = false;
|
||||||
|
float invDivisor = 1.f / divisor;
|
||||||
|
|
||||||
|
// Compute first barycentric coordinate
|
||||||
|
float3 d = ray.origin - p0;
|
||||||
|
float b1 = Dot(d, s1) * invDivisor;
|
||||||
|
if (b1 < 0. || b1 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute second barycentric coordinate
|
||||||
|
float3 s2 = Cross(d, e1);
|
||||||
|
float b2 = Dot(ray.dir, s2) * invDivisor;
|
||||||
|
if (b2 < 0. || b1 + b2 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute _t_ to intersection point
|
||||||
|
float t = Dot(e2, s2) * invDivisor;
|
||||||
|
if (t < ray.mint || t > ray.maxt)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
if (hit) {
|
||||||
|
ray.maxt = t;
|
||||||
|
ray.hitId = tri.id;
|
||||||
|
}
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle tris[], Ray &r) {
|
||||||
|
Ray ray = r;
|
||||||
|
bool hit = false;
|
||||||
|
// Follow ray through BVH nodes to find primitive intersections
|
||||||
|
uniform int todoOffset = 0, nodeNum = 0;
|
||||||
|
uniform int todo[64];
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
// Check ray against BVH node
|
||||||
|
uniform LinearBVHNode node = nodes[nodeNum];
|
||||||
|
if (any(BBoxIntersect(node.bounds, ray))) {
|
||||||
|
uniform unsigned int nPrimitives = node.nPrimitives;
|
||||||
|
if (nPrimitives > 0) {
|
||||||
|
// Intersect ray with primitives in leaf BVH node
|
||||||
|
uniform unsigned int primitivesOffset = node.offset;
|
||||||
|
for (uniform unsigned int i = 0; i < nPrimitives; ++i) {
|
||||||
|
if (TriIntersect(tris[primitivesOffset+i], ray))
|
||||||
|
hit = true;
|
||||||
|
}
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Put far BVH node on _todo_ stack, advance to near node
|
||||||
|
if (r.dirIsNeg[node.splitAxis]) {
|
||||||
|
todo[todoOffset++] = nodeNum + 1;
|
||||||
|
nodeNum = node.offset;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
todo[todoOffset++] = node.offset;
|
||||||
|
nodeNum = nodeNum + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
r.maxt = ray.maxt;
|
||||||
|
r.hitId = ray.hitId;
|
||||||
|
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static void raytrace_tile(uniform int x0, uniform int x1,
|
||||||
|
uniform int y0, uniform int y1,
|
||||||
|
uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform float widthScale = (float)(baseWidth) / (float)(width);
|
||||||
|
uniform float heightScale = (float)(baseHeight) / (float)(height);
|
||||||
|
|
||||||
|
foreach_tiled (y = y0 ... y1, x = x0 ... x1) {
|
||||||
|
Ray ray;
|
||||||
|
generateRay(raster2camera, camera2world, x*widthScale,
|
||||||
|
y*heightScale, ray);
|
||||||
|
BVHIntersect(nodes, triangles, ray);
|
||||||
|
|
||||||
|
int offset = y * width + x;
|
||||||
|
image[offset] = ray.maxt;
|
||||||
|
id[offset] = ray.hitId;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
export void raytrace_ispc(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
raytrace_tile(0, width, 0, height, width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world, image,
|
||||||
|
id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
task void raytrace_tile_task(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform int dx = 64, dy = 8; // must match dx, dy below
|
||||||
|
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
uniform int x0 = (taskIndex % xBuckets) * dx;
|
||||||
|
uniform int x1 = min(x0 + dx, width);
|
||||||
|
uniform int y0 = (taskIndex / xBuckets) * dy;
|
||||||
|
uniform int y1 = min(y0 + dy, height);
|
||||||
|
|
||||||
|
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world, image,
|
||||||
|
id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
export void raytrace_ispc_tasks(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform int dx = 64, dy = 8;
|
||||||
|
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
uniform int yBuckets = (height + (dy-1)) / dy;
|
||||||
|
uniform int nTasks = xBuckets * yBuckets;
|
||||||
|
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world,
|
||||||
|
image, id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
34
examples_ptx/rt/rt.vcxproj
Normal file
34
examples_ptx/rt/rt.vcxproj
Normal file
@@ -0,0 +1,34 @@
|
|||||||
|
<?xml version="1.0" encoding="utf-8"?>
|
||||||
|
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
|
||||||
|
<ItemGroup Label="ProjectConfigurations">
|
||||||
|
<ProjectConfiguration Include="Debug|Win32">
|
||||||
|
<Configuration>Debug</Configuration>
|
||||||
|
<Platform>Win32</Platform>
|
||||||
|
</ProjectConfiguration>
|
||||||
|
<ProjectConfiguration Include="Debug|x64">
|
||||||
|
<Configuration>Debug</Configuration>
|
||||||
|
<Platform>x64</Platform>
|
||||||
|
</ProjectConfiguration>
|
||||||
|
<ProjectConfiguration Include="Release|Win32">
|
||||||
|
<Configuration>Release</Configuration>
|
||||||
|
<Platform>Win32</Platform>
|
||||||
|
</ProjectConfiguration>
|
||||||
|
<ProjectConfiguration Include="Release|x64">
|
||||||
|
<Configuration>Release</Configuration>
|
||||||
|
<Platform>x64</Platform>
|
||||||
|
</ProjectConfiguration>
|
||||||
|
</ItemGroup>
|
||||||
|
<PropertyGroup Label="Globals">
|
||||||
|
<ProjectGuid>{E787BC3F-2D2E-425E-A64D-4721E2FF3DC9}</ProjectGuid>
|
||||||
|
<Keyword>Win32Proj</Keyword>
|
||||||
|
<RootNamespace>rt</RootNamespace>
|
||||||
|
<ISPC_file>rt</ISPC_file>
|
||||||
|
<default_targets>sse2,sse4-x2,avx1-i32x8</default_targets>
|
||||||
|
</PropertyGroup>
|
||||||
|
<Import Project="..\common.props" />
|
||||||
|
<ItemGroup>
|
||||||
|
<ClCompile Include="rt.cpp" />
|
||||||
|
<ClCompile Include="rt_serial.cpp" />
|
||||||
|
<ClCompile Include="../tasksys.cpp" />
|
||||||
|
</ItemGroup>
|
||||||
|
</Project>
|
||||||
334
examples_ptx/rt/rt1.ispc
Normal file
334
examples_ptx/rt/rt1.ispc
Normal file
@@ -0,0 +1,334 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) 2010-2011, Intel Corporation
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Intel Corporation nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||||
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||||
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#define bool int
|
||||||
|
|
||||||
|
typedef float<3> float3;
|
||||||
|
|
||||||
|
struct Ray {
|
||||||
|
float3 origin, dir, invDir;
|
||||||
|
//uniform unsigned int dirIsNeg[3];
|
||||||
|
unsigned int dirIsNeg0, dirIsNeg1, dirIsNeg2;
|
||||||
|
float mint, maxt;
|
||||||
|
int hitId;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct Triangle {
|
||||||
|
float p[3][4];
|
||||||
|
int id;
|
||||||
|
int pad[3];
|
||||||
|
};
|
||||||
|
|
||||||
|
struct LinearBVHNode {
|
||||||
|
float bounds[2][3];
|
||||||
|
unsigned int offset; // num primitives for leaf, second child for interior
|
||||||
|
unsigned int8 nPrimitives;
|
||||||
|
unsigned int8 splitAxis;
|
||||||
|
unsigned int16 pad;
|
||||||
|
};
|
||||||
|
|
||||||
|
static inline float3 Cross(const float3 v1, const float3 v2) {
|
||||||
|
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
|
||||||
|
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
|
||||||
|
float3 ret;
|
||||||
|
ret.x = (v1y * v2z) - (v1z * v2y);
|
||||||
|
ret.y = (v1z * v2x) - (v1x * v2z);
|
||||||
|
ret.z = (v1x * v2y) - (v1y * v2x);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline float Dot(const float3 a, const float3 b) {
|
||||||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
static void generateRay(uniform const float raster2camera[4][4],
|
||||||
|
uniform const float camera2world[4][4],
|
||||||
|
float x, float y, Ray &ray) {
|
||||||
|
ray.mint = 0.f;
|
||||||
|
ray.maxt = 1e30f;
|
||||||
|
|
||||||
|
ray.hitId = 0;
|
||||||
|
|
||||||
|
// transform raster coordinate (x, y, 0) to camera space
|
||||||
|
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
|
||||||
|
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
|
||||||
|
float camz = raster2camera[2][3];
|
||||||
|
float camw = raster2camera[3][3];
|
||||||
|
camx /= camw;
|
||||||
|
camy /= camw;
|
||||||
|
camz /= camw;
|
||||||
|
|
||||||
|
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy +
|
||||||
|
camera2world[0][2] * camz;
|
||||||
|
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy +
|
||||||
|
camera2world[1][2] * camz;
|
||||||
|
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy +
|
||||||
|
camera2world[2][2] * camz;
|
||||||
|
|
||||||
|
ray.origin.x = camera2world[0][3] / camera2world[3][3];
|
||||||
|
ray.origin.y = camera2world[1][3] / camera2world[3][3];
|
||||||
|
ray.origin.z = camera2world[2][3] / camera2world[3][3];
|
||||||
|
|
||||||
|
ray.invDir = 1.f / ray.dir;
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
ray.dirIsNeg[0] = any(ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[1] = any(ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[2] = any(ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
#else
|
||||||
|
ray.dirIsNeg0 = any(ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg1 = any(ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg2 = any(ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
static bool BBoxIntersect(const uniform float bounds[2][3],
|
||||||
|
const Ray &ray) {
|
||||||
|
uniform float3 bounds0 = { bounds[0][0], bounds[0][1], bounds[0][2] };
|
||||||
|
uniform float3 bounds1 = { bounds[1][0], bounds[1][1], bounds[1][2] };
|
||||||
|
float t0 = ray.mint, t1 = ray.maxt;
|
||||||
|
|
||||||
|
// Check all three axis-aligned slabs. Don't try to early out; it's
|
||||||
|
// not worth the trouble
|
||||||
|
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
|
||||||
|
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
|
||||||
|
if (tNear.x > tFar.x) {
|
||||||
|
float tmp = tNear.x;
|
||||||
|
tNear.x = tFar.x;
|
||||||
|
tFar.x = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.x, t0);
|
||||||
|
t1 = min(tFar.x, t1);
|
||||||
|
|
||||||
|
if (tNear.y > tFar.y) {
|
||||||
|
float tmp = tNear.y;
|
||||||
|
tNear.y = tFar.y;
|
||||||
|
tFar.y = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.y, t0);
|
||||||
|
t1 = min(tFar.y, t1);
|
||||||
|
|
||||||
|
if (tNear.z > tFar.z) {
|
||||||
|
float tmp = tNear.z;
|
||||||
|
tNear.z = tFar.z;
|
||||||
|
tFar.z = tmp;
|
||||||
|
}
|
||||||
|
t0 = max(tNear.z, t0);
|
||||||
|
t1 = min(tFar.z, t1);
|
||||||
|
|
||||||
|
return (t0 <= t1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
inline
|
||||||
|
static bool TriIntersect(const uniform Triangle &tri, Ray &ray) {
|
||||||
|
uniform float3 p0 = { tri.p[0][0], tri.p[0][1], tri.p[0][2] };
|
||||||
|
uniform float3 p1 = { tri.p[1][0], tri.p[1][1], tri.p[1][2] };
|
||||||
|
uniform float3 p2 = { tri.p[2][0], tri.p[2][1], tri.p[2][2] };
|
||||||
|
uniform float3 e1 = p1 - p0;
|
||||||
|
uniform float3 e2 = p2 - p0;
|
||||||
|
|
||||||
|
float3 s1 = Cross(ray.dir, e2);
|
||||||
|
float divisor = Dot(s1, e1);
|
||||||
|
bool hit = true;
|
||||||
|
|
||||||
|
if (divisor == 0.)
|
||||||
|
hit = false;
|
||||||
|
float invDivisor = 1.f / divisor;
|
||||||
|
|
||||||
|
// Compute first barycentric coordinate
|
||||||
|
float3 d = ray.origin - p0;
|
||||||
|
float b1 = Dot(d, s1) * invDivisor;
|
||||||
|
if (b1 < 0. || b1 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute second barycentric coordinate
|
||||||
|
float3 s2 = Cross(d, e1);
|
||||||
|
float b2 = Dot(ray.dir, s2) * invDivisor;
|
||||||
|
if (b2 < 0. || b1 + b2 > 1.)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
// Compute _t_ to intersection point
|
||||||
|
float t = Dot(e2, s2) * invDivisor;
|
||||||
|
if (t < ray.mint || t > ray.maxt)
|
||||||
|
hit = false;
|
||||||
|
|
||||||
|
if (hit) {
|
||||||
|
ray.maxt = t;
|
||||||
|
ray.hitId = tri.id;
|
||||||
|
}
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
bool BVHIntersect(const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle tris[], Ray &r,
|
||||||
|
uniform int todo[]) {
|
||||||
|
Ray ray = r;
|
||||||
|
bool hit = false;
|
||||||
|
// Follow ray through BVH nodes to find primitive intersections
|
||||||
|
uniform int todoOffset = 0, nodeNum = 0;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
// Check ray against BVH node
|
||||||
|
uniform LinearBVHNode node = nodes[nodeNum];
|
||||||
|
if (any(BBoxIntersect(node.bounds, ray))) {
|
||||||
|
uniform unsigned int nPrimitives = node.nPrimitives;
|
||||||
|
if (nPrimitives > 0) {
|
||||||
|
// Intersect ray with primitives in leaf BVH node
|
||||||
|
uniform unsigned int primitivesOffset = node.offset;
|
||||||
|
for (uniform unsigned int i = 0; i < nPrimitives; ++i) {
|
||||||
|
if (TriIntersect(tris[primitivesOffset+i], ray))
|
||||||
|
hit = true;
|
||||||
|
}
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Put far BVH node on _todo_ stack, advance to near node
|
||||||
|
int dirIsNeg;
|
||||||
|
if (node.splitAxis == 0) dirIsNeg = r.dirIsNeg0;
|
||||||
|
if (node.splitAxis == 1) dirIsNeg = r.dirIsNeg1;
|
||||||
|
if (node.splitAxis == 2) dirIsNeg = r.dirIsNeg2;
|
||||||
|
if (dirIsNeg) {
|
||||||
|
todo[todoOffset++] = nodeNum + 1;
|
||||||
|
nodeNum = node.offset;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
todo[todoOffset++] = node.offset;
|
||||||
|
nodeNum = nodeNum + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
r.maxt = ray.maxt;
|
||||||
|
r.hitId = ray.hitId;
|
||||||
|
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline
|
||||||
|
static void raytrace_tile(uniform int x0, uniform int x1,
|
||||||
|
uniform int y0, uniform int y1,
|
||||||
|
uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform float widthScale = (float)(baseWidth) / (float)(width);
|
||||||
|
uniform float heightScale = (float)(baseHeight) / (float)(height);
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
uniform int * uniform todo = uniform new uniform int[64];
|
||||||
|
#define ALLOC
|
||||||
|
#else
|
||||||
|
uniform int todo[64];
|
||||||
|
#endif
|
||||||
|
|
||||||
|
foreach_tiled (y = y0 ... y1, x = x0 ... x1) {
|
||||||
|
Ray ray;
|
||||||
|
generateRay(raster2camera, camera2world, x*widthScale,
|
||||||
|
y*heightScale, ray);
|
||||||
|
BVHIntersect(nodes, triangles, ray, todo);
|
||||||
|
|
||||||
|
int offset = y * width + x;
|
||||||
|
image[offset] = ray.maxt;
|
||||||
|
id[offset] = ray.hitId;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifdef ALLOC
|
||||||
|
delete todo;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
export void raytrace_ispc(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
raytrace_tile(0, width, 0, height, width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world, image,
|
||||||
|
id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
task void raytrace_tile_task(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform int dx = 64, dy = 8; // must match dx, dy below
|
||||||
|
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
uniform int x0 = (taskIndex % xBuckets) * dx;
|
||||||
|
uniform int x1 = min(x0 + dx, width);
|
||||||
|
uniform int y0 = (taskIndex / xBuckets) * dy;
|
||||||
|
uniform int y1 = min(y0 + dy, height);
|
||||||
|
|
||||||
|
raytrace_tile(x0, x1, y0, y1, width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world, image,
|
||||||
|
id, nodes, triangles);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
export void raytrace_ispc_tasks(uniform int width, uniform int height,
|
||||||
|
uniform int baseWidth, uniform int baseHeight,
|
||||||
|
const uniform float raster2camera[4][4],
|
||||||
|
const uniform float camera2world[4][4],
|
||||||
|
uniform float image[], uniform int id[],
|
||||||
|
const uniform LinearBVHNode nodes[],
|
||||||
|
const uniform Triangle triangles[]) {
|
||||||
|
uniform int dx = 64, dy = 8;
|
||||||
|
uniform int xBuckets = (width + (dx-1)) / dx;
|
||||||
|
uniform int yBuckets = (height + (dy-1)) / dy;
|
||||||
|
uniform int nTasks = xBuckets * yBuckets;
|
||||||
|
launch[nTasks] raytrace_tile_task(width, height, baseWidth, baseHeight,
|
||||||
|
raster2camera, camera2world,
|
||||||
|
image, id, nodes, triangles);
|
||||||
|
sync;
|
||||||
|
}
|
||||||
|
|
||||||
292
examples_ptx/rt/rt_serial.cpp
Normal file
292
examples_ptx/rt/rt_serial.cpp
Normal file
@@ -0,0 +1,292 @@
|
|||||||
|
/*
|
||||||
|
Copyright (c) 2010-2011, Intel Corporation
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are
|
||||||
|
met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer in the
|
||||||
|
documentation and/or other materials provided with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Intel Corporation nor the names of its
|
||||||
|
contributors may be used to endorse or promote products derived from
|
||||||
|
this software without specific prior written permission.
|
||||||
|
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
|
||||||
|
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
||||||
|
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
||||||
|
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
|
||||||
|
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||||||
|
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||||||
|
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||||||
|
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
||||||
|
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
||||||
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
||||||
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||||
|
*/
|
||||||
|
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
#define _CRT_SECURE_NO_WARNINGS
|
||||||
|
#define NOMINMAX
|
||||||
|
#pragma warning (disable: 4244)
|
||||||
|
#pragma warning (disable: 4305)
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#include <algorithm>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
// Just enough of a float3 class to do what we need in this file.
|
||||||
|
#ifdef _MSC_VER
|
||||||
|
__declspec(align(16))
|
||||||
|
#endif
|
||||||
|
struct float3 {
|
||||||
|
float3() { }
|
||||||
|
float3(float xx, float yy, float zz) { x = xx; y = yy; z = zz; }
|
||||||
|
|
||||||
|
float3 operator*(float f) const { return float3(x*f, y*f, z*f); }
|
||||||
|
float3 operator-(const float3 &f2) const {
|
||||||
|
return float3(x-f2.x, y-f2.y, z-f2.z);
|
||||||
|
}
|
||||||
|
float3 operator*(const float3 &f2) const {
|
||||||
|
return float3(x*f2.x, y*f2.y, z*f2.z);
|
||||||
|
}
|
||||||
|
float x, y, z;
|
||||||
|
float pad; // match padding/alignment of ispc version
|
||||||
|
}
|
||||||
|
#ifndef _MSC_VER
|
||||||
|
__attribute__ ((aligned(16)))
|
||||||
|
#endif
|
||||||
|
;
|
||||||
|
|
||||||
|
struct Ray {
|
||||||
|
float3 origin, dir, invDir;
|
||||||
|
unsigned int dirIsNeg[3];
|
||||||
|
float mint, maxt;
|
||||||
|
int hitId;
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
|
// Declare these in a namespace so the mangling matches
|
||||||
|
namespace ispc {
|
||||||
|
struct Triangle {
|
||||||
|
float p[3][4]; // extra float pad after each vertex
|
||||||
|
int32_t id;
|
||||||
|
int32_t pad[3]; // make 16 x 32-bits
|
||||||
|
};
|
||||||
|
|
||||||
|
struct LinearBVHNode {
|
||||||
|
float bounds[2][3];
|
||||||
|
int32_t offset; // primitives for leaf, second child for interior
|
||||||
|
uint8_t nPrimitives;
|
||||||
|
uint8_t splitAxis;
|
||||||
|
uint16_t pad;
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
using namespace ispc;
|
||||||
|
|
||||||
|
inline float3 Cross(const float3 &v1, const float3 &v2) {
|
||||||
|
float v1x = v1.x, v1y = v1.y, v1z = v1.z;
|
||||||
|
float v2x = v2.x, v2y = v2.y, v2z = v2.z;
|
||||||
|
float3 ret;
|
||||||
|
ret.x = (v1y * v2z) - (v1z * v2y);
|
||||||
|
ret.y = (v1z * v2x) - (v1x * v2z);
|
||||||
|
ret.z = (v1x * v2y) - (v1y * v2x);
|
||||||
|
return ret;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline float Dot(const float3 &a, const float3 &b) {
|
||||||
|
return a.x * b.x + a.y * b.y + a.z * b.z;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static void generateRay(const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float x, float y, Ray &ray) {
|
||||||
|
ray.mint = 0.f;
|
||||||
|
ray.maxt = 1e30f;
|
||||||
|
|
||||||
|
ray.hitId = 0;
|
||||||
|
|
||||||
|
// transform raster coordinate (x, y, 0) to camera space
|
||||||
|
float camx = raster2camera[0][0] * x + raster2camera[0][1] * y + raster2camera[0][3];
|
||||||
|
float camy = raster2camera[1][0] * x + raster2camera[1][1] * y + raster2camera[1][3];
|
||||||
|
float camz = raster2camera[2][3];
|
||||||
|
float camw = raster2camera[3][3];
|
||||||
|
camx /= camw;
|
||||||
|
camy /= camw;
|
||||||
|
camz /= camw;
|
||||||
|
|
||||||
|
ray.dir.x = camera2world[0][0] * camx + camera2world[0][1] * camy +
|
||||||
|
camera2world[0][2] * camz;
|
||||||
|
ray.dir.y = camera2world[1][0] * camx + camera2world[1][1] * camy +
|
||||||
|
camera2world[1][2] * camz;
|
||||||
|
ray.dir.z = camera2world[2][0] * camx + camera2world[2][1] * camy +
|
||||||
|
camera2world[2][2] * camz;
|
||||||
|
|
||||||
|
ray.origin.x = camera2world[0][3] / camera2world[3][3];
|
||||||
|
ray.origin.y = camera2world[1][3] / camera2world[3][3];
|
||||||
|
ray.origin.z = camera2world[2][3] / camera2world[3][3];
|
||||||
|
|
||||||
|
ray.invDir.x = 1.f / ray.dir.x;
|
||||||
|
ray.invDir.y = 1.f / ray.dir.y;
|
||||||
|
ray.invDir.z = 1.f / ray.dir.z;
|
||||||
|
|
||||||
|
ray.dirIsNeg[0] = (ray.invDir.x < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[1] = (ray.invDir.y < 0) ? 1 : 0;
|
||||||
|
ray.dirIsNeg[2] = (ray.invDir.z < 0) ? 1 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
static inline bool BBoxIntersect(const float bounds[2][3],
|
||||||
|
const Ray &ray) {
|
||||||
|
float3 bounds0(bounds[0][0], bounds[0][1], bounds[0][2]);
|
||||||
|
float3 bounds1(bounds[1][0], bounds[1][1], bounds[1][2]);
|
||||||
|
float t0 = ray.mint, t1 = ray.maxt;
|
||||||
|
|
||||||
|
float3 tNear = (bounds0 - ray.origin) * ray.invDir;
|
||||||
|
float3 tFar = (bounds1 - ray.origin) * ray.invDir;
|
||||||
|
if (tNear.x > tFar.x) {
|
||||||
|
float tmp = tNear.x;
|
||||||
|
tNear.x = tFar.x;
|
||||||
|
tFar.x = tmp;
|
||||||
|
}
|
||||||
|
t0 = std::max(tNear.x, t0);
|
||||||
|
t1 = std::min(tFar.x, t1);
|
||||||
|
|
||||||
|
if (tNear.y > tFar.y) {
|
||||||
|
float tmp = tNear.y;
|
||||||
|
tNear.y = tFar.y;
|
||||||
|
tFar.y = tmp;
|
||||||
|
}
|
||||||
|
t0 = std::max(tNear.y, t0);
|
||||||
|
t1 = std::min(tFar.y, t1);
|
||||||
|
|
||||||
|
if (tNear.z > tFar.z) {
|
||||||
|
float tmp = tNear.z;
|
||||||
|
tNear.z = tFar.z;
|
||||||
|
tFar.z = tmp;
|
||||||
|
}
|
||||||
|
t0 = std::max(tNear.z, t0);
|
||||||
|
t1 = std::min(tFar.z, t1);
|
||||||
|
|
||||||
|
return (t0 <= t1);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
inline bool TriIntersect(const Triangle &tri, Ray &ray) {
|
||||||
|
float3 p0(tri.p[0][0], tri.p[0][1], tri.p[0][2]);
|
||||||
|
float3 p1(tri.p[1][0], tri.p[1][1], tri.p[1][2]);
|
||||||
|
float3 p2(tri.p[2][0], tri.p[2][1], tri.p[2][2]);
|
||||||
|
float3 e1 = p1 - p0;
|
||||||
|
float3 e2 = p2 - p0;
|
||||||
|
|
||||||
|
float3 s1 = Cross(ray.dir, e2);
|
||||||
|
float divisor = Dot(s1, e1);
|
||||||
|
|
||||||
|
if (divisor == 0.)
|
||||||
|
return false;
|
||||||
|
float invDivisor = 1.f / divisor;
|
||||||
|
|
||||||
|
// Compute first barycentric coordinate
|
||||||
|
float3 d = ray.origin - p0;
|
||||||
|
float b1 = Dot(d, s1) * invDivisor;
|
||||||
|
if (b1 < 0. || b1 > 1.)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// Compute second barycentric coordinate
|
||||||
|
float3 s2 = Cross(d, e1);
|
||||||
|
float b2 = Dot(ray.dir, s2) * invDivisor;
|
||||||
|
if (b2 < 0. || b1 + b2 > 1.)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
// Compute _t_ to intersection point
|
||||||
|
float t = Dot(e2, s2) * invDivisor;
|
||||||
|
if (t < ray.mint || t > ray.maxt)
|
||||||
|
return false;
|
||||||
|
|
||||||
|
ray.maxt = t;
|
||||||
|
ray.hitId = tri.id;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
bool BVHIntersect(const LinearBVHNode nodes[], const Triangle tris[],
|
||||||
|
Ray &r) {
|
||||||
|
Ray ray = r;
|
||||||
|
bool hit = false;
|
||||||
|
// Follow ray through BVH nodes to find primitive intersections
|
||||||
|
int todoOffset = 0, nodeNum = 0;
|
||||||
|
int todo[64];
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
// Check ray against BVH node
|
||||||
|
const LinearBVHNode &node = nodes[nodeNum];
|
||||||
|
if (BBoxIntersect(node.bounds, ray)) {
|
||||||
|
unsigned int nPrimitives = node.nPrimitives;
|
||||||
|
if (nPrimitives > 0) {
|
||||||
|
// Intersect ray with primitives in leaf BVH node
|
||||||
|
unsigned int primitivesOffset = node.offset;
|
||||||
|
for (unsigned int i = 0; i < nPrimitives; ++i) {
|
||||||
|
if (TriIntersect(tris[primitivesOffset+i], ray))
|
||||||
|
hit = true;
|
||||||
|
}
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
// Put far BVH node on _todo_ stack, advance to near node
|
||||||
|
if (r.dirIsNeg[node.splitAxis]) {
|
||||||
|
todo[todoOffset++] = nodeNum + 1;
|
||||||
|
nodeNum = node.offset;
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
todo[todoOffset++] = node.offset;
|
||||||
|
nodeNum = nodeNum + 1;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
if (todoOffset == 0)
|
||||||
|
break;
|
||||||
|
nodeNum = todo[--todoOffset];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
r.maxt = ray.maxt;
|
||||||
|
r.hitId = ray.hitId;
|
||||||
|
|
||||||
|
return hit;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void raytrace_serial(int width, int height, int baseWidth, int baseHeight,
|
||||||
|
const float raster2camera[4][4],
|
||||||
|
const float camera2world[4][4],
|
||||||
|
float image[],
|
||||||
|
int id[],
|
||||||
|
const LinearBVHNode nodes[],
|
||||||
|
const Triangle triangles[]) {
|
||||||
|
float widthScale = float(baseWidth) / float(width);
|
||||||
|
float heightScale = float(baseHeight) / float(height);
|
||||||
|
|
||||||
|
for (int y = 0; y < height; ++y) {
|
||||||
|
for (int x = 0; x < width; ++x) {
|
||||||
|
Ray ray;
|
||||||
|
generateRay(raster2camera, camera2world, x * widthScale,
|
||||||
|
y * heightScale, ray);
|
||||||
|
BVHIntersect(nodes, triangles, ray);
|
||||||
|
|
||||||
|
int offset = y * width + x;
|
||||||
|
image[offset] = ray.maxt;
|
||||||
|
id[offset] = ray.hitId;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
BIN
examples_ptx/rt/sponza.bvh
Normal file
BIN
examples_ptx/rt/sponza.bvh
Normal file
Binary file not shown.
BIN
examples_ptx/rt/sponza.camera
Normal file
BIN
examples_ptx/rt/sponza.camera
Normal file
Binary file not shown.
BIN
examples_ptx/rt/teapot.bvh
Normal file
BIN
examples_ptx/rt/teapot.bvh
Normal file
Binary file not shown.
BIN
examples_ptx/rt/teapot.camera
Normal file
BIN
examples_ptx/rt/teapot.camera
Normal file
Binary file not shown.
Reference in New Issue
Block a user