added workable .cu files for stencil & mandelbrot

This commit is contained in:
Evghenii
2013-11-08 10:00:49 +01:00
parent cb7cbec0d5
commit 426afc7377
10 changed files with 645 additions and 160 deletions

View File

@@ -2,7 +2,7 @@
EXAMPLE=mandelbrot_tasks3d EXAMPLE=mandelbrot_tasks3d
CPP_SRC=mandelbrot_tasks3d.cpp mandelbrot_tasks_serial.cpp CPP_SRC=mandelbrot_tasks3d.cpp mandelbrot_tasks_serial.cpp
ISPC_SRC=mandelbrot_tasks3d.ispc ISPC_SRC=mandelbrot_tasks3d.ispc
ISPC_IA_TARGETS=avx,sse2,sse4 ISPC_IA_TARGETS=avx
ISPC_ARM_TARGETS=neon ISPC_ARM_TARGETS=neon
include ../common.mk include ../common.mk

View File

@@ -0,0 +1,402 @@
/*
Copyright (c) 2010-2011, Intel Corporation
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#define NOMINMAX
#pragma warning (disable: 4244)
#pragma warning (disable: 4305)
#endif
#include <stdio.h>
#include <algorithm>
#include <string.h>
#include "../timing.h"
#include <iostream>
#include <cuda.h>
#include <vector>
#include <cassert>
#include "drvapi_error_string.h"
#define checkCudaErrors(err) __checkCudaErrors (err, __FILE__, __LINE__)
// These are the inline versions for all of the SDK helper functions
void __checkCudaErrors(CUresult err, const char *file, const int line) {
if(CUDA_SUCCESS != err) {
std::cerr << "checkCudeErrors() Driver API error = " << err << "\""
<< getCudaDrvErrorString(err) << "\" from file <" << file
<< ", line " << line << "\n";
exit(-1);
}
}
extern "C"
void mandelbrot_ispc(
float x0, float y0,
float x1, float y1,
int width, int height,
int maxIterations, int output[]) ;
/**********************/
/* Basic CUDriver API */
CUcontext context;
void createContext(const int deviceId = 0)
{
CUdevice device;
int devCount;
checkCudaErrors(cuInit(0));
checkCudaErrors(cuDeviceGetCount(&devCount));
assert(devCount > 0);
checkCudaErrors(cuDeviceGet(&device, deviceId < devCount ? deviceId : 0));
char name[128];
checkCudaErrors(cuDeviceGetName(name, 128, device));
std::cout << "Using CUDA Device [0]: " << name << "\n";
int devMajor, devMinor;
checkCudaErrors(cuDeviceComputeCapability(&devMajor, &devMinor, device));
std::cout << "Device Compute Capability: "
<< devMajor << "." << devMinor << "\n";
if (devMajor < 2) {
std::cerr << "ERROR: Device 0 is not SM 2.0 or greater\n";
exit(1);
}
// Create driver context
checkCudaErrors(cuCtxCreate(&context, 0, device));
}
void destroyContext()
{
checkCudaErrors(cuCtxDestroy(context));
}
CUmodule loadModule(const char * module)
{
CUmodule cudaModule;
checkCudaErrors(cuModuleLoadData(&cudaModule, module));
return cudaModule;
}
void unloadModule(CUmodule &cudaModule)
{
checkCudaErrors(cuModuleUnload(cudaModule));
}
CUfunction getFunction(CUmodule &cudaModule, const char * function)
{
CUfunction cudaFunction;
checkCudaErrors(cuModuleGetFunction(&cudaFunction, cudaModule, function));
return cudaFunction;
}
CUdeviceptr deviceMalloc(const size_t size)
{
CUdeviceptr d_buf;
checkCudaErrors(cuMemAlloc(&d_buf, size));
return d_buf;
}
void deviceFree(CUdeviceptr d_buf)
{
checkCudaErrors(cuMemFree(d_buf));
}
void memcpyD2H(void * h_buf, CUdeviceptr d_buf, const size_t size)
{
checkCudaErrors(cuMemcpyDtoH(h_buf, d_buf, size));
}
void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
{
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
}
#define deviceLaunch(func,nbx,nby,nbz,params) \
checkCudaErrors( \
cuLaunchKernel( \
(func), \
((nbx-1)/(128/32)+1), (nby), (nbz), \
128, 1, 1, \
0, NULL, (params), NULL \
));
typedef CUdeviceptr devicePtr;
/**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C"
{
#if 0
struct ModuleManager
{
private:
typedef std::pair<std::string, CUModule> ModulePair;
typedef std::map <std::string, CUModule> ModuleMap;
ModuleMap module_list;
ModuleMap::iterator findModule(const char * module_name)
{
return module_list.find(std::string(module_name));
}
public:
CUmodule loadModule(const char * module_name, const char * module_data)
{
const ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
{
CUmodule cudaModule = loadModule(module);
module_list.insert(std::make_pair(std::string(module_name), cudaModule));
return cudaModule
}
return it->second;
}
void unloadModule(const char * module_name)
{
ModuleMap::iterator it = findModule(module_name)
if (it != ModuleMap::end)
module_list.erase(it);
}
};
#endif
void *CUDAAlloc(void **handlePtr, int64_t size, int32_t alignment)
{
#if 0
fprintf(stderr, " ptr= %p\n", *handlePtr);
fprintf(stderr, " size= %d\n", (int)size);
fprintf(stderr, " alignment= %d\n", (int)alignment);
fprintf(stderr, " ------- \n\n");
#endif
return NULL;
}
void CUDALaunch(
void **handlePtr,
const char * module_name,
const char * module_1,
const char * func_name,
void **func_args,
int countx, int county, int countz)
{
assert(module_name != NULL);
assert(module_1 != NULL);
assert(func_name != NULL);
assert(func_args != NULL);
#if 1
const char * module = module_1;
#else
const std::vector<char> module_str = readBinary("kernel.cubin");
const char * module = &module_str[0];
#endif
#if 1
CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args);
unloadModule(cudaModule);
#else
fprintf(stderr, " handle= %p\n", *handlePtr);
fprintf(stderr, " count= %d %d %d\n", countx, county, countz);
fprintf(stderr, " module_name= %s \n", module_name);
fprintf(stderr, " func_name= %s \n", func_name);
// fprintf(stderr, " ptx= %s \n", module);
fprintf(stderr, " x0= %g \n", *((float*)(func_args[0])));
fprintf(stderr, " dx= %g \n", *((float*)(func_args[1])));
fprintf(stderr, " y0= %g \n", *((float*)(func_args[2])));
fprintf(stderr, " dy= %g \n", *((float*)(func_args[3])));
fprintf(stderr, " w= %d \n", *((int*)(func_args[4])));
fprintf(stderr, " h= %d \n", *((int*)(func_args[5])));
fprintf(stderr, " xs= %d \n", *((int*)(func_args[6])));
fprintf(stderr, " ys= %d \n", *((int*)(func_args[7])));
fprintf(stderr, " maxit= %d \n", *((int*)(func_args[8])));
fprintf(stderr, " ptr= %p \n", *((int**)(func_args[9])));
fprintf(stderr, " ------- \n\n");
#endif
}
void CUDASync(void *handle)
{
checkCudaErrors(cuStreamSynchronize(0));
}
void ISPCSync(void *handle)
{
}
void CUDAFree(void *handle)
{
}
}
/********************/
extern void mandelbrot_serial(float x0, float y0, float x1, float y1,
int width, int height, int maxIterations,
int output[]);
/* Write a PPM image file with the image of the Mandelbrot set */
static void
writePPM(int *buf, int width, int height, const char *fn) {
FILE *fp = fopen(fn, "wb");
fprintf(fp, "P6\n");
fprintf(fp, "%d %d\n", width, height);
fprintf(fp, "255\n");
for (int i = 0; i < width*height; ++i) {
// Map the iteration count to colors by just alternating between
// two greys.
char c = (buf[i] & 0x1) ? 240 : 20;
for (int j = 0; j < 3; ++j)
fputc(c, fp);
}
fclose(fp);
printf("Wrote image file %s\n", fn);
}
static void usage() {
fprintf(stderr, "usage: mandelbrot [--scale=<factor>]\n");
exit(1);
}
int main(int argc, char *argv[]) {
unsigned int width = 1536;
unsigned int height = 1024;
float x0 = -2;
float x1 = 1;
float y0 = -1;
float y1 = 1;
if (argc == 1)
;
else if (argc == 2) {
if (strncmp(argv[1], "--scale=", 8) == 0) {
float scale = atof(argv[1] + 8);
if (scale == 0.f)
usage();
width *= scale;
height *= scale;
// round up to multiples of 16
width = (width + 0xf) & ~0xf;
height = (height + 0xf) & ~0xf;
}
else
usage();
}
else
usage();
/*******************/
createContext();
/*******************/
int maxIterations = 512;
int *buf = new int[width*height];
for (unsigned int i = 0; i < width*height; i++)
buf[i] = 0;
const size_t bufsize = sizeof(int)*width*height;
devicePtr d_buf = deviceMalloc(bufsize);
memcpyH2D(d_buf, buf, bufsize);
//
// Compute the image using the ispc implementation; report the minimum
// time of three runs.
//
double minISPC = 1e30;
for (int i = 0; i < 3; ++i) {
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
mandelbrot_ispc(x0, y0, x1, y1, width, height, maxIterations, (int*)d_buf);
double dt = get_elapsed_mcycles();
minISPC = std::min(minISPC, dt);
}
memcpyD2H(buf, d_buf, bufsize);
deviceFree(d_buf);
printf("[mandelbrot ispc+tasks]:\t[%.3f] million cycles\n", minISPC);
writePPM(buf, width, height, "mandelbrot-ispc.ppm");
//
// And run the serial implementation 3 times, again reporting the
// minimum time.
//
double minSerial = 1e30;
for (int i = 0; i < 3; ++i) {
// Clear out the buffer
for (unsigned int i = 0; i < width * height; ++i)
buf[i] = 0;
reset_and_start_timer();
mandelbrot_serial(x0, y0, x1, y1, width, height, maxIterations, buf);
double dt = get_elapsed_mcycles();
minSerial = std::min(minSerial, dt);
}
printf("[mandelbrot serial]:\t\t[%.3f] million cycles\n", minSerial);
writePPM(buf, width, height, "mandelbrot-serial.ppm");
printf("\t\t\t\t(%.2fx speedup from ISPC + tasks)\n", minSerial/minISPC);
return 0;
}

View File

@@ -1,8 +1,8 @@
#include <stdio.h> #include <stdio.h>
#define blockIndex0 (blockIdx.x) #define blockIndex0 (blockIdx.x*4 + (threadIdx.x >> 5))
#define blockIndex1 (blockIdx.y) #define blockIndex1 (blockIdx.y)
#define vectorWidth (32) #define vectorWidth (32)
#define vectorIndex (threadIdx.x & (vectorWidth-1)) #define vectorIndex (threadIdx.x & 31)
int __device__ __forceinline__ int __device__ __forceinline__
mandel(float c_re, float c_im, int count) mandel(float c_re, float c_im, int count)

View File

@@ -1,13 +1,10 @@
#ifdef __NVPTX__ #ifdef __NVPTX__
#define blockIndex0 blockIndex0() #define taskIndex0 blockIndex0()
#define blockIndex1 blockIndex1() #define taskIndex1 blockIndex1()
#define vectorWidth warpSize() #define taskCount0 blockCount0()
#define vectorIndex laneIndex() #define taskCount1 blockCount1()
#else #define programCount warpSize()
#define blockIndex0 taskIndex0 #define programIndex laneIndex()
#define blockIndex1 taskIndex1
#define vectorWidth programCount
#define vectorIndex programIndex
#endif #endif
#if 0 #if 0
@@ -46,23 +43,25 @@ mandelbrot_scanline(
uniform int xspan, uniform int yspan, uniform int xspan, uniform int yspan,
uniform int maxIterations, uniform int output[]) uniform int maxIterations, uniform int output[])
{ {
const uniform int xstart = blockIndex0 * xspan; if (taskIndex0 >= taskCount0) return;
if (taskIndex1 >= taskCount1) return;
const uniform int xstart = taskIndex0 * xspan;
const uniform int xend = min(xstart + xspan, width); const uniform int xend = min(xstart + xspan, width);
const uniform int ystart = blockIndex1 * yspan; const uniform int ystart = taskIndex1 * yspan;
const uniform int yend = min(ystart + yspan, height); const uniform int yend = min(ystart + yspan, height);
// assert(xspan >= vectorWidth);
for (uniform int yi = ystart; yi < yend; yi++) for (uniform int yi = ystart; yi < yend; yi++)
for (uniform int xi = xstart; xi < xend; xi += vectorWidth) for (uniform int xi = xstart; xi < xend; xi += programCount)
{ {
const float x = x0 + (xi + vectorIndex) * dx; const float x = x0 + (xi + programIndex) * dx;
const float y = y0 + yi * dy; const float y = y0 + yi * dy;
const int res = mandel(x,y,maxIterations); const int res = mandel(x,y,maxIterations);
const int index = yi * width + (xi + vectorIndex); const int index = yi * width + (xi + programIndex);
if (xi + vectorIndex < xend) if (xi + programIndex < xend)
output[index] = res; output[index] = res;
} }
} }

Binary file not shown.

View File

@@ -1,6 +1,6 @@
#define programCount 32 #define programCount 32
#define programIndex threadIdx.x #define programIndex (threadIdx.x & 31)
#define taskIndex blockIdx.x #define taskIndex (blockIdx.x*4 + (threadIdx.x >> 5))
__device__ static void __device__ static void
stencil_step( int x0, int x1, stencil_step( int x0, int x1,

Binary file not shown.

View File

@@ -34,13 +34,14 @@
#ifdef __NVPTX__ #ifdef __NVPTX__
#warning "emitting DEVICE code" #warning "emitting DEVICE code"
#define taskIndex blockIndex0() #define taskIndex blockIndex0()
#define taskCount blockCount0()
#define programIndex laneIndex() #define programIndex laneIndex()
#define programCount warpSize() #define programCount warpSize()
#else #else
#warning "emitting HOST code" #warning "emitting HOST code"
#endif #endif
static void static inline void
stencil_step(uniform int x0, uniform int x1, stencil_step(uniform int x0, uniform int x1,
uniform int y0, uniform int y1, uniform int y0, uniform int y1,
uniform int z0, uniform int z1, uniform int z0, uniform int z1,
@@ -50,12 +51,30 @@ stencil_step(uniform int x0, uniform int x1,
const uniform int Nxy = Nx * Ny; const uniform int Nxy = Nx * Ny;
// foreach (z = z0 ... z1, y = y0 ... y1, x = x0 ... x1) // foreach (z = z0 ... z1, y = y0 ... y1, x = x0 ... x1)
#if 0
#define VER1
#endif
#ifdef VER1
const uniform long x1o = 1;
const uniform long x2o = 2;
const uniform long x3o = 3;
const uniform long y1o = Nx;
const uniform long y2o = Nx*2;
const uniform long y3o = Nx*3;
const uniform long z1o = Nxy;
const uniform long z2o = Nxy*2;
const uniform long z3o = Nxy*3;
#endif
for (uniform int z = z0; z < z1; z++) for (uniform int z = z0; z < z1; z++)
for (uniform int y = y0; y < y1; y++) for (uniform int y = y0; y < y1; y++)
{
const int index_base = (z * Nxy) + (y * Nx);
for (uniform int xb = x0; xb < x1; xb += programCount) for (uniform int xb = x0; xb < x1; xb += programCount)
{ {
const int x = xb + programIndex; const int x = xb + programIndex;
int index = (z * Nxy) + (y * Nx) + x; int index = index_base + x;
#ifndef VER1
#define A_cur(x, y, z) Ain[index + (x) + ((y) * Nx) + ((z) * Nxy)] #define A_cur(x, y, z) Ain[index + (x) + ((y) * Nx) + ((z) * Nxy)]
#define A_next(x, y, z) Aout[index + (x) + ((y) * Nx) + ((z) * Nxy)] #define A_next(x, y, z) Aout[index + (x) + ((y) * Nx) + ((z) * Nxy)]
double div = coef[0] * A_cur(0, 0, 0) + double div = coef[0] * A_cur(0, 0, 0) +
@@ -68,12 +87,27 @@ stencil_step(uniform int x0, uniform int x1,
coef[3] * (A_cur(+3, 0, 0) + A_cur(-3, 0, 0) + coef[3] * (A_cur(+3, 0, 0) + A_cur(-3, 0, 0) +
A_cur(0, +3, 0) + A_cur(0, -3, 0) + A_cur(0, +3, 0) + A_cur(0, -3, 0) +
A_cur(0, 0, +3) + A_cur(0, 0, -3)); A_cur(0, 0, +3) + A_cur(0, 0, -3));
#else
#define A_cur(x, y, z) Ain [index + (x) + (y) + (z)]
#define A_next(x, y, z) Aout[index + (x) + (y) + (z)]
double div = coef[0] * A_cur(0, 0, 0) +
coef[1] * (A_cur(+x1o, 0, 0) + A_cur(-x1o, 0, 0) +
A_cur(0, +y1o, 0) + A_cur(0, -y1o, 0) +
A_cur(0, 0, +z1o) + A_cur(0, 0, -z1o)) +
coef[2] * (A_cur(+x2o, 0, 0) + A_cur(-x2o, 0, 0) +
A_cur(0, +y2o, 0) + A_cur(0, -y2o, 0) +
A_cur(0, 0, +z2o) + A_cur(0, 0, -z2o)) +
coef[3] * (A_cur(+x3o, 0, 0) + A_cur(-x3o, 0, 0) +
A_cur(0, +y3o, 0) + A_cur(0, -y3o, 0) +
A_cur(0, 0, +z3o) + A_cur(0, 0, -z3o));
#endif
if (x < x1) if (x < x1)
A_next(0, 0, 0) = 2.0d0 * A_cur(0, 0, 0) - A_next(0, 0, 0) + A_next(0, 0, 0) = 2.0d0 * A_cur(0, 0, 0) - A_next(0, 0, 0) +
vsq[index] * div; vsq[index] * div;
} }
} }
}
static task void static task void
@@ -83,6 +117,8 @@ stencil_step_task(uniform int x0, uniform int x1,
uniform int Nx, uniform int Ny, uniform int Nz, uniform int Nx, uniform int Ny, uniform int Nz,
uniform const double coef[4], uniform const double vsq[], uniform const double coef[4], uniform const double vsq[],
uniform const double Ain[], uniform double Aout[]) { uniform const double Ain[], uniform double Aout[]) {
if(taskIndex >= taskCount) return;
stencil_step(x0, x1, y0, y1, z0+taskIndex, z0+taskIndex+1, stencil_step(x0, x1, y0, y1, z0+taskIndex, z0+taskIndex+1,
Nx, Ny, Nz, coef, vsq, Ain, Aout); Nx, Ny, Nz, coef, vsq, Ain, Aout);
} }

View File

@@ -132,11 +132,12 @@ void memcpyH2D(CUdeviceptr d_buf, void * h_buf, const size_t size)
checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size)); checkCudaErrors(cuMemcpyHtoD(d_buf, h_buf, size));
} }
#define deviceLaunch(func,nbx,nby,nbz,params) \ #define deviceLaunch(func,nbx,nby,nbz,params) \
checkCudaErrors(cuFuncSetCacheConfig((func), CU_FUNC_CACHE_PREFER_L1)); \
checkCudaErrors( \ checkCudaErrors( \
cuLaunchKernel( \ cuLaunchKernel( \
(func), \ (func), \
(nbx), (nby), (nbz), \ ((nbx-1)/(128/32)+1), (nby), (nbz), \
32, 1, 1, \ 128, 1, 1, \
0, NULL, (params), NULL \ 0, NULL, (params), NULL \
)); ));
@@ -144,6 +145,38 @@ typedef CUdeviceptr devicePtr;
/**************/ /**************/
#include <vector>
std::vector<char> readBinary(const char * filename)
{
std::vector<char> buffer;
FILE *fp = fopen(filename, "rb");
if (!fp )
{
fprintf(stderr, "file %s not found\n", filename);
assert(0);
}
#if 0
char c;
while ((c = fgetc(fp)) != EOF)
buffer.push_back(c);
#else
fseek(fp, 0, SEEK_END);
const unsigned long long size = ftell(fp); /*calc the size needed*/
fseek(fp, 0, SEEK_SET);
buffer.resize(size);
if (fp == NULL){ /*ERROR detection if file == empty*/
fprintf(stderr, "Error: There was an Error reading the file %s \n",filename);
exit(1);
}
else if (fread(&buffer[0], sizeof(char), size, fp) != size){ /* if count of read bytes != calculated size of .bin file -> ERROR*/
fprintf(stderr, "Error: There was an Error reading the file %s \n", filename);
exit(1);
}
#endif
fprintf(stderr, " read buffer of size= %d bytes \n", (int)buffer.size());
return buffer;
}
extern "C" extern "C"
{ {
@@ -155,15 +188,21 @@ extern "C"
void CUDALaunch( void CUDALaunch(
void **handlePtr, void **handlePtr,
const char * module_name, const char * module_name,
const char * module, const char * module_1,
const char * func_name, const char * func_name,
void **func_args, void **func_args,
int countx, int county, int countz) int countx, int county, int countz)
{ {
assert(module_name != NULL); assert(module_name != NULL);
assert(module != NULL); assert(module_1 != NULL);
assert(func_name != NULL); assert(func_name != NULL);
assert(func_args != NULL); assert(func_args != NULL);
#if 1
const char * module = module_1;
#else
const std::vector<char> module_str = readBinary("kernel.cubin");
const char * module = &module_str[0];
#endif
CUmodule cudaModule = loadModule(module); CUmodule cudaModule = loadModule(module);
CUfunction cudaFunction = getFunction(cudaModule, func_name); CUfunction cudaFunction = getFunction(cudaModule, func_name);
deviceLaunch(cudaFunction, countx, county, countz, func_args); deviceLaunch(cudaFunction, countx, county, countz, func_args);

View File

@@ -63,47 +63,56 @@
// CUDA Specific primitives // CUDA Specific primitives
// //
#define CUDABLOCKSIZE 128 #define CUDABLOCKSIZE 128
#define WARPSIZE2 5
#define WARPSIZE (1<<WARPSIZE2)
/***************/
__declspec(safe,cost0)
static inline uniform int warpSize()
{
return WARPSIZE; //__warpsize();
}
/***************/
__declspec(safe,cost0)
static inline uniform int laneIndex()
{
return __tid_x() & (WARPSIZE-1) ; //& (warpSize()-1);
}
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockIndex0() static inline uniform int blockIndex0()
{ {
return __ctaid_x(); return (__ctaid_x() * (CUDABLOCKSIZE >> WARPSIZE2)) + (__tid_x() >> WARPSIZE2);
} }
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockIndex1() static inline uniform int blockIndex1()
{ {
return __ctaid_y(); return __ctaid_y();
} }
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockIndex2() static inline uniform int blockIndex2()
{ {
return __ctaid_y(); return __ctaid_y();
} }
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockCount0() static inline uniform int blockCount0()
{ {
return __nctaid_x(); return __nctaid_x() * (CUDABLOCKSIZE >> WARPSIZE2);
} }
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockCount1() static inline uniform int blockCount1()
{ {
return __nctaid_y(); return __nctaid_y();
} }
/***************/
__declspec(safe,cost0) __declspec(safe,cost0)
static inline uniform int blockCount2() static inline uniform int blockCount2()
{ {
return __nctaid_z(); return __nctaid_z();
} }
__declspec(safe,cost0)
static inline uniform int warpSize()
{
return __warpsize();
}
__declspec(safe,cost0)
static inline uniform int laneIndex()
{
return __tid_x() & (warpSize()-1);
}
/////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////////////////
// Low level primitives // Low level primitives