Use native float/half conversion instructions with the AVX2 target.
This commit is contained in:
@@ -822,6 +822,9 @@ DefineStdlib(SymbolTable *symbolTable, llvm::LLVMContext *ctx, llvm::Module *mod
|
||||
lDefineConstantIntFunc("__fast_masked_vload", (int)g->opt.fastMaskedVload, module,
|
||||
symbolTable);
|
||||
|
||||
lDefineConstantInt("__have_native_half", (g->target.isa == Target::AVX2),
|
||||
module, symbolTable);
|
||||
|
||||
if (includeStdlibISPC) {
|
||||
// If the user wants the standard library to be included, parse the
|
||||
// serialized version of the stdlib.ispc file to get its
|
||||
|
||||
@@ -58,6 +58,14 @@ define <16 x i32> @__max_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonl
|
||||
ret <16 x i32> %ret
|
||||
}
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; gather
|
||||
|
||||
|
||||
@@ -58,6 +58,14 @@ define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly a
|
||||
ret <8 x i32> %ret
|
||||
}
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; gather
|
||||
|
||||
@@ -65,6 +73,3 @@ gen_gather(8, i8)
|
||||
gen_gather(8, i16)
|
||||
gen_gather(8, i32)
|
||||
gen_gather(8, i64)
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -63,6 +63,61 @@ define <16 x i32> @__max_varying_uint32(<16 x i32>, <16 x i32>) nounwind readonl
|
||||
ret <16 x i32> %m
|
||||
}
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; float/half conversions
|
||||
|
||||
declare <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16>) nounwind readnone
|
||||
; 0 is round nearest even
|
||||
declare <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float>, i32) nounwind readnone
|
||||
|
||||
define <16 x float> @__half_to_float_varying(<16 x i16> %v) nounwind readnone {
|
||||
%r_0 = shufflevector <16 x i16> %v, <16 x i16> undef,
|
||||
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
||||
%vr_0 = call <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16> %r_0)
|
||||
%r_1 = shufflevector <16 x i16> %v, <16 x i16> undef,
|
||||
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
|
||||
%vr_1 = call <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16> %r_1)
|
||||
%r = shufflevector <8 x float> %vr_0, <8 x float> %vr_1,
|
||||
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
|
||||
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
|
||||
ret <16 x float> %r
|
||||
}
|
||||
|
||||
define <16 x i16> @__float_to_half_varying(<16 x float> %v) nounwind readnone {
|
||||
%r_0 = shufflevector <16 x float> %v, <16 x float> undef,
|
||||
<8 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7>
|
||||
%vr_0 = call <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %r_0, i32 0)
|
||||
%r_1 = shufflevector <16 x float> %v, <16 x float> undef,
|
||||
<8 x i32> <i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
|
||||
%vr_1 = call <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %r_1, i32 0)
|
||||
%r = shufflevector <8 x i16> %vr_0, <8 x i16> %vr_1,
|
||||
<16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7,
|
||||
i32 8, i32 9, i32 10, i32 11, i32 12, i32 13, i32 14, i32 15>
|
||||
ret <16 x i16> %r
|
||||
}
|
||||
|
||||
define float @__half_to_float_uniform(i16 %v) nounwind readnone {
|
||||
%v1 = bitcast i16 %v to <1 x i16>
|
||||
%vv = shufflevector <1 x i16> %v1, <1 x i16> undef,
|
||||
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
|
||||
i32 undef, i32 undef, i32 undef, i32 undef>
|
||||
%rv = call <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16> %vv)
|
||||
%r = extractelement <8 x float> %rv, i32 0
|
||||
ret float %r
|
||||
}
|
||||
|
||||
define i16 @__float_to_half_uniform(float %v) nounwind readnone {
|
||||
%v1 = bitcast float %v to <1 x float>
|
||||
%vv = shufflevector <1 x float> %v1, <1 x float> undef,
|
||||
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
|
||||
i32 undef, i32 undef, i32 undef, i32 undef>
|
||||
; round to nearest even
|
||||
%rv = call <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %vv, i32 0)
|
||||
%r = extractelement <8 x i16> %rv, i32 0
|
||||
ret i16 %r
|
||||
}
|
||||
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; gather
|
||||
|
||||
|
||||
@@ -63,6 +63,44 @@ define <8 x i32> @__max_varying_uint32(<8 x i32>, <8 x i32>) nounwind readonly a
|
||||
ret <8 x i32> %m
|
||||
}
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; float/half conversions
|
||||
|
||||
declare <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16>) nounwind readnone
|
||||
; 0 is round nearest even
|
||||
declare <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float>, i32) nounwind readnone
|
||||
|
||||
define <8 x float> @__half_to_float_varying(<8 x i16> %v) nounwind readnone {
|
||||
%r = call <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16> %v)
|
||||
ret <8 x float> %r
|
||||
}
|
||||
|
||||
define <8 x i16> @__float_to_half_varying(<8 x float> %v) nounwind readnone {
|
||||
%r = call <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %v, i32 0)
|
||||
ret <8 x i16> %r
|
||||
}
|
||||
|
||||
define float @__half_to_float_uniform(i16 %v) nounwind readnone {
|
||||
%v1 = bitcast i16 %v to <1 x i16>
|
||||
%vv = shufflevector <1 x i16> %v1, <1 x i16> undef,
|
||||
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
|
||||
i32 undef, i32 undef, i32 undef, i32 undef>
|
||||
%rv = call <8 x float> @llvm.x86.vcvtph2ps.256(<8 x i16> %vv)
|
||||
%r = extractelement <8 x float> %rv, i32 0
|
||||
ret float %r
|
||||
}
|
||||
|
||||
define i16 @__float_to_half_uniform(float %v) nounwind readnone {
|
||||
%v1 = bitcast float %v to <1 x float>
|
||||
%vv = shufflevector <1 x float> %v1, <1 x float> undef,
|
||||
<8 x i32> <i32 0, i32 undef, i32 undef, i32 undef,
|
||||
i32 undef, i32 undef, i32 undef, i32 undef>
|
||||
; round to nearest even
|
||||
%rv = call <8 x i16> @llvm.x86.vcvtps2ph.256(<8 x float> %vv, i32 0)
|
||||
%r = extractelement <8 x i16> %rv, i32 0
|
||||
ret i16 %r
|
||||
}
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; gather
|
||||
|
||||
@@ -70,6 +108,3 @@ gen_gather(8, i8)
|
||||
gen_gather(8, i16)
|
||||
gen_gather(8, i32)
|
||||
gen_gather(8, i64)
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -47,6 +47,14 @@ int64minmax()
|
||||
|
||||
include(`target-sse2-common.ll')
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; rcp
|
||||
|
||||
|
||||
@@ -44,6 +44,14 @@ int64minmax()
|
||||
|
||||
include(`target-sse2-common.ll')
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; rounding
|
||||
;;
|
||||
|
||||
@@ -47,6 +47,14 @@ int64minmax()
|
||||
|
||||
include(`target-sse4-common.ll')
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; rcp
|
||||
|
||||
|
||||
@@ -44,6 +44,14 @@ int64minmax()
|
||||
|
||||
include(`target-sse4-common.ll')
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; half conversion routines
|
||||
|
||||
declare float @__half_to_float_uniform(i16 %v) nounwind readnone
|
||||
declare <WIDTH x float> @__half_to_float_varying(<WIDTH x i16> %v) nounwind readnone
|
||||
declare i16 @__float_to_half_uniform(float %v) nounwind readnone
|
||||
declare <WIDTH x i16> @__float_to_half_varying(<WIDTH x float> %v) nounwind readnone
|
||||
|
||||
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
|
||||
;; rcp
|
||||
|
||||
|
||||
4
ispc.cpp
4
ispc.cpp
@@ -210,7 +210,7 @@ Target::GetTarget(const char *arch, const char *cpu, const char *isa,
|
||||
t->isa = Target::AVX2;
|
||||
t->nativeVectorWidth = 8;
|
||||
t->vectorWidth = 8;
|
||||
t->attributes = "+avx2,+popcnt,+cmov";
|
||||
t->attributes = "+avx2,+popcnt,+cmov,+f16c";
|
||||
t->maskingIsFree = false;
|
||||
t->allOffMaskIsSafe = false;
|
||||
t->maskBitCount = 32;
|
||||
@@ -219,7 +219,7 @@ Target::GetTarget(const char *arch, const char *cpu, const char *isa,
|
||||
t->isa = Target::AVX2;
|
||||
t->nativeVectorWidth = 16;
|
||||
t->vectorWidth = 16;
|
||||
t->attributes = "+avx2,+popcnt,+cmov";
|
||||
t->attributes = "+avx2,+popcnt,+cmov,+f16c";
|
||||
t->maskingIsFree = false;
|
||||
t->allOffMaskIsSafe = false;
|
||||
t->maskBitCount = 32;
|
||||
|
||||
534
stdlib.ispc
534
stdlib.ispc
@@ -2824,114 +2824,124 @@ static inline uniform double pow(uniform double a, uniform double b) {
|
||||
// half-precision floats
|
||||
|
||||
static inline uniform float half_to_float(uniform unsigned int16 h) {
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
if (__have_native_half) {
|
||||
return __half_to_float_uniform(h);
|
||||
}
|
||||
else {
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
uniform unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
uniform unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
uniform unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
if (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
uniform int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
uniform unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
uniform unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
uniform unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
if (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
uniform int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
uniform int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
uniform unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static inline float half_to_float(unsigned int16 h) {
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
if (__have_native_half) {
|
||||
return __half_to_float_varying(h);
|
||||
}
|
||||
else {
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
cif (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
if ((h & 0x7FFFu) == 0)
|
||||
// Signed zero
|
||||
return floatbits(((unsigned int32) h) << 16);
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
// Though these are int16 quantities, we get much better code
|
||||
// with them stored as int32s...
|
||||
unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
cif (he == 0) {
|
||||
// Denormal will convert to normalized
|
||||
int e = -1;
|
||||
// The following loop figures out how much extra to adjust the exponent
|
||||
// Shift until leading bit overflows into exponent bit
|
||||
do {
|
||||
e++;
|
||||
hm <<= 1;
|
||||
} while((hm & 0x0400u) == 0);
|
||||
|
||||
// Sign bit
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
int32 xes = ((int32)(he >> 10)) - 15 + 127 - e;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
unsigned int32 xm = ((unsigned int32) (hm & 0x03FFu)) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
else {
|
||||
if (he == 0x7C00u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (hm == 0)
|
||||
// Zero mantissa -> signed inf
|
||||
return floatbits((((unsigned int32) hs) << 16) |
|
||||
((unsigned int32) 0x7F800000u));
|
||||
else
|
||||
// NaN
|
||||
return floatbits(0xFFC00000u);
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
// sign
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -2939,209 +2949,237 @@ static inline float half_to_float(unsigned int16 h) {
|
||||
|
||||
|
||||
static inline uniform int16 float_to_half(uniform float f) {
|
||||
uniform int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
uniform int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
if (__have_native_half) {
|
||||
return __float_to_half_uniform(f);
|
||||
}
|
||||
else {
|
||||
uniform unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
uniform unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
uniform unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
uniform int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
uniform int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
else {
|
||||
if (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
uniform unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
uniform unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
uniform int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
uniform unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
uniform unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
uniform unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
else {
|
||||
if (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
uniform unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
uniform unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
uniform int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
uniform unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
uniform unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
}
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
|
||||
|
||||
static inline int16 float_to_half(float f) {
|
||||
int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
if (__have_native_half) {
|
||||
return __float_to_half_varying(f);
|
||||
}
|
||||
else {
|
||||
unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
int32 x = intbits(f);
|
||||
// Store the return value in an int32 until the very end; this ends up
|
||||
// generating better code...
|
||||
int32 ret;
|
||||
if ((x & 0x7FFFFFFFu) == 0)
|
||||
// Signed zero
|
||||
ret = (x >> 16);
|
||||
else {
|
||||
cif (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (xe == 0) {
|
||||
// Denormal will underflow, return a signed zero
|
||||
ret = (xs >> 16);
|
||||
}
|
||||
else {
|
||||
cif (xe == 0x7F800000u) {
|
||||
// Inf or NaN (all the exponent bits are set)
|
||||
if (xm == 0)
|
||||
// Zero mantissa -> signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else
|
||||
// NaN, only 1st mantissa bit set
|
||||
ret = 0xFE00u;
|
||||
}
|
||||
else {
|
||||
// Normalized number
|
||||
unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
unsigned int32 hm;
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
if (hes >= 0x1F)
|
||||
// Overflow: return signed infinity
|
||||
ret = ((xs >> 16) | 0x7C00u);
|
||||
else if (hes <= 0) {
|
||||
// Underflow
|
||||
if ((14 - hes) > 24) {
|
||||
// Mantissa shifted all the way off & no rounding possibility
|
||||
hm = 0u; // Set mantissa to zero
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
xm |= 0x00800000u; // Add the hidden leading bit
|
||||
hm = (xm >> (14 - hes)); // Mantissa
|
||||
if ((xm >> (13 - hes)) & 0x00000001u) // Check for rounding
|
||||
// Round, might overflow into exp bit, but this is OK
|
||||
hm += 1u;
|
||||
unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
ret = (hs | hm);
|
||||
}
|
||||
else {
|
||||
unsigned int32 he = (hes << 10); // Exponent
|
||||
hm = (xm >> 13); // Mantissa
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret = (hs | he | hm) + 1u;
|
||||
else
|
||||
ret = (hs | he | hm);
|
||||
}
|
||||
}
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
return (int16)ret;
|
||||
}
|
||||
|
||||
|
||||
static inline uniform float half_to_float_fast(uniform unsigned int16 h) {
|
||||
uniform unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
uniform unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
uniform unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
|
||||
// sign
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
if (__have_native_half) {
|
||||
return __half_to_float_uniform(h);
|
||||
}
|
||||
else {
|
||||
uniform unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
uniform unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
uniform unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
|
||||
// sign
|
||||
uniform unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
uniform int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
uniform unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
uniform unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
|
||||
static inline float half_to_float_fast(unsigned int16 h) {
|
||||
unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
|
||||
// sign
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
if (__have_native_half) {
|
||||
return __half_to_float_varying(h);
|
||||
}
|
||||
else {
|
||||
unsigned int32 hs = h & (int32)0x8000u; // Pick off sign bit
|
||||
unsigned int32 he = h & (int32)0x7C00u; // Pick off exponent bits
|
||||
unsigned int32 hm = h & (int32)0x03FFu; // Pick off mantissa bits
|
||||
|
||||
// sign
|
||||
unsigned int32 xs = ((unsigned int32) hs) << 16;
|
||||
// Exponent: unbias the halfp, then bias the single
|
||||
int32 xes = ((int32) (he >> 10)) - 15 + 127;
|
||||
// Exponent
|
||||
unsigned int32 xe = (unsigned int32) (xes << 23);
|
||||
// Mantissa
|
||||
unsigned int32 xm = ((unsigned int32) hm) << 13;
|
||||
return floatbits(xs | xe | xm);
|
||||
}
|
||||
}
|
||||
|
||||
static inline uniform int16 float_to_half_fast(uniform float f) {
|
||||
uniform int32 x = intbits(f);
|
||||
uniform unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
uniform unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
uniform unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (__have_native_half) {
|
||||
return __float_to_half_uniform(f);
|
||||
}
|
||||
else {
|
||||
uniform int32 x = intbits(f);
|
||||
uniform unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
uniform unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
uniform unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
|
||||
uniform unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
uniform int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
uniform unsigned int32 he = (hes << 10); // Exponent
|
||||
uniform int32 hm = (xm >> 13); // Mantissa
|
||||
uniform int32 ret = (hs | he | hm);
|
||||
uniform unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
uniform int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
uniform unsigned int32 he = (hes << 10); // Exponent
|
||||
uniform int32 hm = (xm >> 13); // Mantissa
|
||||
uniform int32 ret = (hs | he | hm);
|
||||
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret += 1u;
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret += 1u;
|
||||
|
||||
return (int16)ret;
|
||||
return (int16)ret;
|
||||
}
|
||||
}
|
||||
|
||||
static inline int16 float_to_half_fast(float f) {
|
||||
int32 x = intbits(f);
|
||||
unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
if (__have_native_half) {
|
||||
return __float_to_half_varying(f);
|
||||
}
|
||||
else {
|
||||
int32 x = intbits(f);
|
||||
unsigned int32 xs = x & 0x80000000u; // Pick off sign bit
|
||||
unsigned int32 xe = x & 0x7F800000u; // Pick off exponent bits
|
||||
unsigned int32 xm = x & 0x007FFFFFu; // Pick off mantissa bits
|
||||
|
||||
unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
unsigned int32 he = (hes << 10); // Exponent
|
||||
int32 hm = (xm >> 13); // Mantissa
|
||||
int32 ret = (hs | he | hm);
|
||||
unsigned int32 hs = (xs >> 16); // Sign bit
|
||||
// Exponent unbias the single, then bias the halfp
|
||||
int32 hes = ((int)(xe >> 23)) - 127 + 15;
|
||||
unsigned int32 he = (hes << 10); // Exponent
|
||||
int32 hm = (xm >> 13); // Mantissa
|
||||
int32 ret = (hs | he | hm);
|
||||
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret += 1u;
|
||||
if (xm & 0x00001000u) // Check for rounding
|
||||
// Round, might overflow to inf, this is OK
|
||||
ret += 1u;
|
||||
|
||||
return (int16)ret;
|
||||
return (int16)ret;
|
||||
}
|
||||
}
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////
|
||||
|
||||
21
tests/half-3.ispc
Normal file
21
tests/half-3.ispc
Normal file
@@ -0,0 +1,21 @@
|
||||
|
||||
export uniform int width() { return programCount; }
|
||||
|
||||
export void f_v(uniform float RET[]) {
|
||||
int errors = 0;
|
||||
|
||||
foreach (i = 0 ... 65535) {
|
||||
unsigned int16 h = i;
|
||||
float f = half_to_float(i);
|
||||
h = float_to_half(f);
|
||||
|
||||
int mismatches = (f == f && i != h);
|
||||
errors += reduce_add(mismatches);
|
||||
}
|
||||
|
||||
RET[programIndex] = errors;
|
||||
}
|
||||
|
||||
export void result(uniform float RET[]) {
|
||||
RET[programIndex] = 0;
|
||||
}
|
||||
Reference in New Issue
Block a user