diff --git a/examples_cuda/deferred/kernels_shared.cu b/examples_cuda/deferred/kernels_shared.cu new file mode 100644 index 00000000..391fb43a --- /dev/null +++ b/examples_cuda/deferred/kernels_shared.cu @@ -0,0 +1,659 @@ +/* + Copyright (c) 2010-2011, Intel Corporation + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in the + documentation and/or other materials provided with the distribution. + + * Neither the name of Intel Corporation nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS + IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED + TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A + PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER + OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +*/ + + +#include "deferred.h" +#include +#include + +#define programCount 32 +#define programIndex (threadIdx.x & 31) +#define taskIndex (blockIdx.x*4 + (threadIdx.x >> 5)) +#define taskCount (gridDim.x*4) +#define warpIdx (threadIdx.x >> 5) + +#define int32 int +#define int16 short +#define int8 char + +__device__ static inline float clamp(float v, float low, float high) +{ + return min(max(v, low), high); +} + +struct InputDataArrays +{ + float *zBuffer; + unsigned int16 *normalEncoded_x; // half float + unsigned int16 *normalEncoded_y; // half float + unsigned int16 *specularAmount; // half float + unsigned int16 *specularPower; // half float + unsigned int8 *albedo_x; // unorm8 + unsigned int8 *albedo_y; // unorm8 + unsigned int8 *albedo_z; // unorm8 + float *lightPositionView_x; + float *lightPositionView_y; + float *lightPositionView_z; + float *lightAttenuationBegin; + float *lightColor_x; + float *lightColor_y; + float *lightColor_z; + float *lightAttenuationEnd; +}; + +struct InputHeader +{ + float cameraProj[4][4]; + float cameraNear; + float cameraFar; + + int32 framebufferWidth; + int32 framebufferHeight; + int32 numLights; + int32 inputDataChunkSize; + int32 inputDataArrayOffsets[idaNum]; +}; + + +/////////////////////////////////////////////////////////////////////////// +// Common utility routines + +__device__ +static inline float +dot3(float x, float y, float z, float a, float b, float c) { + return (x*a + y*b + z*c); +} + + +#if 0 +template +struct Uniform +{ + static __shared__ T shdata[128]; + T data[(N-1)/programCount+1]; + + __device__ inline const T get(const int i) const + { + const int elemIdx = i & (programCount-1); + const int chunkIdx = i >> 5; + return __shfl(data[chunkIdx], elemIdx); + } + + __device__ inline void set(const int i, const T value) const + { + const int elemIdx = i & (programCount-1); + const int chunkIdx = i >> 5; + shdata[elemIdx] = value; + data[chunkIdx] = shdata[programIndex]; + } +} +#endif + + +__device__ +static inline void +normalize3(float x, float y, float z, float &ox, float &oy, float &oz) { + float n = rsqrt(x*x + y*y + z*z); + ox = x * n; + oy = y * n; + oz = z * n; +} + +__device__ inline +static float reduce_min(float value) +{ +#pragma unroll + for (int i = 4; i >=0; i--) + value = min(value, __shfl_xor(value, 1<=0; i--) + value = max(value, __shfl_xor(value, 1<=0; i--) + value += __shfl_xor(value, 1<= tileEndX) break; + // Unproject depth buffer Z value into view space + float z = zBuffer[y * gBufferWidth + x]; + float viewSpaceZ = cameraProj_43 / (z - cameraProj_33); + + // Work out Z bounds for our samples + // Avoid considering skybox/background or otherwise invalid pixels + if ((viewSpaceZ < cameraFar) && (viewSpaceZ >= cameraNear)) { + laneMinZ = min(laneMinZ, viewSpaceZ); + laneMaxZ = max(laneMaxZ, viewSpaceZ); + } + } + } + minZ = reduce_min(laneMinZ); + maxZ = reduce_max(laneMaxZ); +} + + +__device__ +static inline int32 +IntersectLightsWithTileMinMax( + int32 tileStartX, int32 tileEndX, + int32 tileStartY, int32 tileEndY, + // Tile data + float minZ, + float maxZ, + // G-buffer data + int32 gBufferWidth, int32 gBufferHeight, + // Camera data + float cameraProj_11, float cameraProj_22, + // Light Data + int32 numLights, + float light_positionView_x_array[], + float light_positionView_y_array[], + float light_positionView_z_array[], + float light_attenuationEnd_array[], + // Output + int32 tileLightIndices[] + ) +{ + float gBufferScale_x = 0.5f * (float)gBufferWidth; + float gBufferScale_y = 0.5f * (float)gBufferHeight; + + float frustumPlanes_xy[4] = { + -(cameraProj_11 * gBufferScale_x), + (cameraProj_11 * gBufferScale_x), + (cameraProj_22 * gBufferScale_y), + -(cameraProj_22 * gBufferScale_y) }; + float frustumPlanes_z[4] = { + tileEndX - gBufferScale_x, + -tileStartX + gBufferScale_x, + tileEndY - gBufferScale_y, + -tileStartY + gBufferScale_y }; + + for ( int i = 0; i < 4; ++i) { + float norm = rsqrt(frustumPlanes_xy[i] * frustumPlanes_xy[i] + + frustumPlanes_z[i] * frustumPlanes_z[i]); + frustumPlanes_xy[i] *= norm; + frustumPlanes_z[i] *= norm; + } + + int32 tileNumLights = 0; + + for ( int lightIndexB = 0; lightIndexB < numLights; lightIndexB += programCount) + { + const int lightIndex = lightIndexB + programIndex; + + float light_positionView_z = light_positionView_z_array[lightIndex]; + float light_attenuationEnd = light_attenuationEnd_array[lightIndex]; + float light_attenuationEndNeg = -light_attenuationEnd; + + float d = light_positionView_z - minZ; + bool inFrustum = (d >= light_attenuationEndNeg); + + d = maxZ - light_positionView_z; + inFrustum = inFrustum && (d >= light_attenuationEndNeg); + + // This seems better than cif(!inFrustum) ccontinue; here since we + // don't actually need to mask the rest of this function - this is + // just a greedy early-out. Could also structure all of this as + // nested if() statements, but this a bit easier to read + int active = 0; + if ((inFrustum)) { + float light_positionView_x = light_positionView_x_array[lightIndex]; + float light_positionView_y = light_positionView_y_array[lightIndex]; + + d = light_positionView_z * frustumPlanes_z[0] + + light_positionView_x * frustumPlanes_xy[0]; + inFrustum = inFrustum && (d >= light_attenuationEndNeg); + + d = light_positionView_z * frustumPlanes_z[1] + + light_positionView_x * frustumPlanes_xy[1]; + inFrustum = inFrustum && (d >= light_attenuationEndNeg); + + d = light_positionView_z * frustumPlanes_z[2] + + light_positionView_y * frustumPlanes_xy[2]; + inFrustum = inFrustum && (d >= light_attenuationEndNeg); + + d = light_positionView_z * frustumPlanes_z[3] + + light_positionView_y * frustumPlanes_xy[3]; + inFrustum = inFrustum && (d >= light_attenuationEndNeg); + + // Pack and store intersecting lights +#if 0 + if (inFrustum) { + tileNumLights += packed_store_active(&tileLightIndices[tileNumLights], + lightIndex); + } +#else + if (inFrustum) + { + active = 1; + } +#endif + } +#if 1 + if (lightIndex >= numLights) + active = 0; + +#if 0 + const int idx = tileNumLights + inclusive_scan_warp(active); + const int nactive = reduce_sum(active); +#else + const int2 res = warpBinExclusiveScan(active); + const int idx = tileNumLights + res.x; + const int nactive = res.y; +#endif + if (active) + tileLightIndices[idx] = lightIndex; + tileNumLights += nactive; +#endif + } + + return tileNumLights; +} + + +__device__ +static inline int32 +IntersectLightsWithTile( + int32 tileStartX, int32 tileEndX, + int32 tileStartY, int32 tileEndY, + int32 gBufferWidth, int32 gBufferHeight, + // G-buffer data + float zBuffer[], + // Camera data + float cameraProj_11, float cameraProj_22, + float cameraProj_33, float cameraProj_43, + float cameraNear, float cameraFar, + // Light Data + int32 numLights, + float light_positionView_x_array[], + float light_positionView_y_array[], + float light_positionView_z_array[], + float light_attenuationEnd_array[], + // Output + int32 tileLightIndices[] + ) +{ + float minZ, maxZ; + ComputeZBounds(tileStartX, tileEndX, tileStartY, tileEndY, + zBuffer, gBufferWidth, cameraProj_33, cameraProj_43, cameraNear, cameraFar, + minZ, maxZ); + + + int32 tileNumLights = IntersectLightsWithTileMinMax( + tileStartX, tileEndX, tileStartY, tileEndY, minZ, maxZ, + gBufferWidth, gBufferHeight, cameraProj_11, cameraProj_22, + MAX_LIGHTS, light_positionView_x_array, light_positionView_y_array, + light_positionView_z_array, light_attenuationEnd_array, + tileLightIndices); + + return tileNumLights; +} + + +__device__ +static inline void +ShadeTile( + int32 tileStartX, int32 tileEndX, + int32 tileStartY, int32 tileEndY, + int32 gBufferWidth, int32 gBufferHeight, + const InputDataArrays &inputData, + // Camera data + float cameraProj_11, float cameraProj_22, + float cameraProj_33, float cameraProj_43, + // Light list + int32 tileLightIndices[], + int32 tileNumLights, + // UI + bool visualizeLightCount, + // Output + unsigned int8 framebuffer_r[], + unsigned int8 framebuffer_g[], + unsigned int8 framebuffer_b[] + ) +{ + if (tileNumLights == 0 || visualizeLightCount) { + unsigned int8 c = (unsigned int8)(min(tileNumLights << 2, 255)); + for ( int32 y = tileStartY; y < tileEndY; ++y) { + for ( int xb = tileStartX ; xb < tileEndX; xb += programCount) + { + const int x = xb + programIndex; + if (x >= tileEndX) continue; + int32 framebufferIndex = (y * gBufferWidth + x); + framebuffer_r[framebufferIndex] = c; + framebuffer_g[framebufferIndex] = c; + framebuffer_b[framebufferIndex] = c; + } + } + } else { + float twoOverGBufferWidth = 2.0f / gBufferWidth; + float twoOverGBufferHeight = 2.0f / gBufferHeight; + + for ( int32 y = tileStartY; y < tileEndY; ++y) { + float positionScreen_y = -(((0.5f + y) * twoOverGBufferHeight) - 1.f); + + for ( int xb = tileStartX ; xb < tileEndX; xb += programCount) + { + const int x = xb + programIndex; +// if (x >= tileEndX) break; + int32 gBufferOffset = y * gBufferWidth + x; + + // Reconstruct position and (negative) view vector from G-buffer + float surface_positionView_x, surface_positionView_y, surface_positionView_z; + float Vneg_x, Vneg_y, Vneg_z; + + float z = inputData.zBuffer[gBufferOffset]; + + // Compute screen/clip-space position + // NOTE: Mind DX11 viewport transform and pixel center! + float positionScreen_x = (0.5f + (float)(x)) * + twoOverGBufferWidth - 1.0f; + + // Unproject depth buffer Z value into view space + surface_positionView_z = cameraProj_43 / (z - cameraProj_33); + surface_positionView_x = positionScreen_x * surface_positionView_z / + cameraProj_11; + surface_positionView_y = positionScreen_y * surface_positionView_z / + cameraProj_22; + + // We actually end up with a vector pointing *at* the + // surface (i.e. the negative view vector) + normalize3(surface_positionView_x, surface_positionView_y, + surface_positionView_z, Vneg_x, Vneg_y, Vneg_z); + + // Reconstruct normal from G-buffer + float surface_normal_x, surface_normal_y, surface_normal_z; + float normal_x = __half2float(inputData.normalEncoded_x[gBufferOffset]); + float normal_y = __half2float(inputData.normalEncoded_y[gBufferOffset]); + + float f = (normal_x - normal_x * normal_x) + (normal_y - normal_y * normal_y); + float m = sqrt(4.0f * f - 1.0f); + + surface_normal_x = m * (4.0f * normal_x - 2.0f); + surface_normal_y = m * (4.0f * normal_y - 2.0f); + surface_normal_z = 3.0f - 8.0f * f; + + // Load other G-buffer parameters + float surface_specularAmount = + __half2float(inputData.specularAmount[gBufferOffset]); + float surface_specularPower = + __half2float(inputData.specularPower[gBufferOffset]); + float surface_albedo_x = Unorm8ToFloat32(inputData.albedo_x[gBufferOffset]); + float surface_albedo_y = Unorm8ToFloat32(inputData.albedo_y[gBufferOffset]); + float surface_albedo_z = Unorm8ToFloat32(inputData.albedo_z[gBufferOffset]); + + float lit_x = 0.0f; + float lit_y = 0.0f; + float lit_z = 0.0f; + for ( int32 tileLightIndex = 0; tileLightIndex < tileNumLights; + ++tileLightIndex) { + int32 lightIndex = tileLightIndices[tileLightIndex]; + + // Gather light data relevant to initial culling + float light_positionView_x = + inputData.lightPositionView_x[lightIndex]; + float light_positionView_y = + inputData.lightPositionView_y[lightIndex]; + float light_positionView_z = + inputData.lightPositionView_z[lightIndex]; + float light_attenuationEnd = + inputData.lightAttenuationEnd[lightIndex]; + + // Compute light vector + float L_x = light_positionView_x - surface_positionView_x; + float L_y = light_positionView_y - surface_positionView_y; + float L_z = light_positionView_z - surface_positionView_z; + + float distanceToLight2 = dot3(L_x, L_y, L_z, L_x, L_y, L_z); + + // Clip at end of attenuation + float light_attenutaionEnd2 = light_attenuationEnd * light_attenuationEnd; + + if (distanceToLight2 < light_attenutaionEnd2) { + float distanceToLight = sqrt(distanceToLight2); + + // HLSL "rcp" is allowed to be fairly inaccurate + float distanceToLightRcp = 1.0f/distanceToLight; + L_x *= distanceToLightRcp; + L_y *= distanceToLightRcp; + L_z *= distanceToLightRcp; + + // Start computing brdf + float NdotL = dot3(surface_normal_x, surface_normal_y, + surface_normal_z, L_x, L_y, L_z); + + // Clip back facing + if (NdotL > 0.0f) { + float light_attenuationBegin = + inputData.lightAttenuationBegin[lightIndex]; + + // Light distance attenuation (linstep) + float lightRange = (light_attenuationEnd - light_attenuationBegin); + float falloffPosition = (light_attenuationEnd - distanceToLight); + float attenuation = min(falloffPosition / lightRange, 1.0f); + + float H_x = (L_x - Vneg_x); + float H_y = (L_y - Vneg_y); + float H_z = (L_z - Vneg_z); + normalize3(H_x, H_y, H_z, H_x, H_y, H_z); + + float NdotH = dot3(surface_normal_x, surface_normal_y, + surface_normal_z, H_x, H_y, H_z); + NdotH = max(NdotH, 0.0f); + + float specular = pow(NdotH, surface_specularPower); + float specularNorm = (surface_specularPower + 2.0f) * + (1.0f / 8.0f); + float specularContrib = surface_specularAmount * + specularNorm * specular; + + float k = attenuation * NdotL * (1.0f + specularContrib); + + float light_color_x = inputData.lightColor_x[lightIndex]; + float light_color_y = inputData.lightColor_y[lightIndex]; + float light_color_z = inputData.lightColor_z[lightIndex]; + + float lightContrib_x = surface_albedo_x * light_color_x; + float lightContrib_y = surface_albedo_y * light_color_y; + float lightContrib_z = surface_albedo_z * light_color_z; + + lit_x += lightContrib_x * k; + lit_y += lightContrib_y * k; + lit_z += lightContrib_z * k; + } + } + } + + // Gamma correct + // These pows are pretty slow right now, but we can do + // something faster if really necessary to squeeze every + // last bit of performance out of it + float gamma = 1.0 / 2.2f; + lit_x = pow(clamp(lit_x, 0.0f, 1.0f), gamma); + lit_y = pow(clamp(lit_y, 0.0f, 1.0f), gamma); + lit_z = pow(clamp(lit_z, 0.0f, 1.0f), gamma); + + framebuffer_r[gBufferOffset] = Float32ToUnorm8(lit_x); + framebuffer_g[gBufferOffset] = Float32ToUnorm8(lit_y); + framebuffer_b[gBufferOffset] = Float32ToUnorm8(lit_z); + } + } + } +} + + +/////////////////////////////////////////////////////////////////////////// +// Static decomposition + +extern "C" __global__ void +RenderTile( int num_groups_x, int num_groups_y, + const InputHeader *inputHeaderPtr, + const InputDataArrays *inputDataPtr, + int visualizeLightCount, + // Output + unsigned int8 framebuffer_r[], + unsigned int8 framebuffer_g[], + unsigned int8 framebuffer_b[]) { + if (taskIndex >= taskCount) return; + + const InputHeader inputHeader = *inputHeaderPtr; + const InputDataArrays inputData = *inputDataPtr; + int32 group_y = taskIndex / num_groups_x; + int32 group_x = taskIndex % num_groups_x; + + int32 tile_start_x = group_x * MIN_TILE_WIDTH; + int32 tile_start_y = group_y * MIN_TILE_HEIGHT; + int32 tile_end_x = tile_start_x + MIN_TILE_WIDTH; + int32 tile_end_y = tile_start_y + MIN_TILE_HEIGHT; + + int framebufferWidth = inputHeader.framebufferWidth; + int framebufferHeight = inputHeader.framebufferHeight; + float cameraProj_00 = inputHeader.cameraProj[0][0]; + float cameraProj_11 = inputHeader.cameraProj[1][1]; + float cameraProj_22 = inputHeader.cameraProj[2][2]; + float cameraProj_32 = inputHeader.cameraProj[3][2]; + + // Light intersection: figure out which lights illuminate this tile. +#if 0 + int tileLightIndices[MAX_LIGHTS]; // Light list for the tile +#else + __shared__ int tileLightIndicesFull[4*MAX_LIGHTS]; // Light list for the tile + int *tileLightIndices = &tileLightIndicesFull[warpIdx*MAX_LIGHTS]; +#endif + int numTileLights = + IntersectLightsWithTile(tile_start_x, tile_end_x, + tile_start_y, tile_end_y, + framebufferWidth, framebufferHeight, + inputData.zBuffer, + cameraProj_00, cameraProj_11, + cameraProj_22, cameraProj_32, + inputHeader.cameraNear, inputHeader.cameraFar, + MAX_LIGHTS, + inputData.lightPositionView_x, + inputData.lightPositionView_y, + inputData.lightPositionView_z, + inputData.lightAttenuationEnd, + tileLightIndices); + + // And now shade the tile, using the lights in tileLightIndices + ShadeTile(tile_start_x, tile_end_x, tile_start_y, tile_end_y, + framebufferWidth, framebufferHeight, inputData, + cameraProj_00, cameraProj_11, cameraProj_22, cameraProj_32, + tileLightIndices, numTileLights, visualizeLightCount, + framebuffer_r, framebuffer_g, framebuffer_b); +} + +