Letter of transmittal goes HEER

This is a title page
Included is an abstract

Contents

1

2

Introduction

Approach . .

5.1 Methodology e
5.2 ProjectSchedule

Evaluation Criteria e

Qualifications of Team Members

Sources Cited

1 Introduction

I’d like to introduce some things.

2 Literature Review

Here we will discuss projects similar to ours, as well as technology we plan to use for our project.

o Building an In-Browser JavaScript VM and Debugger Using Generators
http://amasad.me/2014/01/06/building-an-in-browser-javascript-vm-and-debugger-using-generators/

In this blog post, Amjad Masad describes how he implemented debug.js, a JavaScript debugger run-
ning inside the web browser. Since we wish to implement a CO debugger running inside the web
browser, Masad’s notes seem to be relevant. Specifically, this post discusses the architecture of de-
bug.js, as well as various challenges Masad faced in developing it. Debug.js was designed in two
separate parts: a virtual machine and a debugger. The virtual machine handled the task of evaluat-
ing the JavaScript program being debugged, adding support for stopping, starting, and analyzing the
program. The debugger was the visual interface to the virtual machine, allowing users to control the
virtual machine and see its output.

Masad also discusses challenges he overcame while writing debug.js. These included being able to
step line-by-line through a program, keeping track of a call stack, handling errors and exceptions,
implementing native APIs, and dealing with events. While many of the details will be different when
working with C0O, we must still consider all of these challenges in developing our project.

e The Architecture of Open Source Applications (Volume 2): Processing.js
http://www.aosabook.org/en/pjs.html

In Chapter 17 of Mike Kamermans’ book The Architecture of Open Source Applications, he discusses
the design of Processing.js. Processing is a Java-based programming language designed to help teach
computer programming in a visual context. Processing.js is a project designed to run Processing
programs in the web browser using only JavaScript. This was done by writing a Java-to-JavaScript
compiler, and running the resulting code attached to a HTML canvas. Along the way, the developers
ran into several different challenges, mostly due to differences between the Java and JavaScript lan-
guages. The largest difference between the languages was that JavaScript programs do not get their
own thread; the browser freezes if a JavaScript program tries to run for too long. We must consider
this issue among others for our project.

e Node.js Documentation
http://nodejs.org/documentation/

This is the documentation for the node.js platform. We plan to use node.js to write the server-side
code for our project. We believe that node is a good fit for our project since we are writing JavaScript
for the client side of our code, so this will let us work in the same language on the server and client
side. Also, we can make use of the existing ccO compiler to translate CO source code to the bytecode
our virtual machine will run. This is the same compiler used in 15-122, and integrating it with our
server will make it feasible to run actual CO source code.

3 Plan

Our goal is to build a web application that can debug CO code. The user will type in or upload CO source
files. Once this is done, these files will be transferred to our server, where the existing ccO compiler will

be used to generate bytecode corresponding to the user’s source code. This bytecode will be sent back to
the user’s web browser, where we will be running a CO virtual machine. The user will be able to control
this virtual machine as it executes their code. This will give the user the ability to run their code line-by-
line, to set breakpoints, view stack traces, and see the values of variables. By providing access to all this
information, we hope to make it easier for users to write and debug CO programs.

For version control, we will use a git repository hosted on GitHub. We will use a Gantt chart, shown
later in this proposal, to stay on schedule.

4 Benefits

This project will benefit students in 15-122 Principals of Imperative Computation at Carnegie Mellon Uni-
versity by helping them create correct programs. The CO Debugger will enable students to understand how
their programs execute and find where problems originate more easily than with existing tools. In addition
to debugging, students will have better knowledge for how the underlying computation model works when
evaluating their code.

The CO Debugger will also enable students to test simple programs with little setup, using only a web
browser. They will no longer have to set up and become familiar with a Unix environment before they can
program, making CO accessible to more people, more quickly.

S Approach

The approach section contains our methodology, how we plan to implement the project, and our project
schedule, the timeline we plan to adhere to. The methodology outlines the specific tools we will use to
complete the project in a timely manner whereas the schedule outlines the deadlines by which we hope to
have certain tasks completed.

5.1 Methodology

The CO Debugger is designed for the CMU teaching language, CO. It will be hosted on heroku with the
website itself designed in CSS and HTML, using Node.js to run most of the core functionality. We will first
deploy a blank template website after which half of the team will work on parsing CO bytecode and the other
half will work on creating a meaningful user experience. Once both teams have made reasonable progress,
they will combine the two units to complete the basic outline of the project.

5.2 Project Schedule

The project will be separated into five main phases: Basic Website Design, Backend implementation, Fron-
tend Implementation, User Testing, and Revisions. The first phase should take ;POSSIBLY CHANGE
THIS; less than a week with the next two phases occurring simultaneously and composing the rest of the
month’s work. User implementation and revisions will then hopefully take up the remainder of the alloted
time, with extra time padded in case implementation or revisions are more extensive than we have predicted.

6 Evaluation Criteria

The goal of our website, as mentioned earlier in the proposal, is to provide a tool for 15-122 students to
easily step through their CO code as a means of debugging and to gain a deeper level of understanding for
the steps their code is actually taking.

In order to evaluate our final project, we would test the product on various groups of students. Both
those who have completed 15-122 in the past and those currently enrolled. Unfortunately, due to the time
constraints of the project, these students will no longer actively code in CO by the time they see our product,
but their interactions with it will still have been recent enough for them to provide meaningful feedback.
With their feedback, we will determine how well our product succeeds at its aforementioned objectives and
plan a series of modifications based on the comments we receive. We will make sure that the stepping tool
and GUI are fully functional before the group testing phase so that uninformative bugs do not catch the
attention of our test subjects, and they instead provide us with information to improve the user experience
as a whole.

Our main goal is to provide these students with a useful debugging tool, so their feedback is invaluable
in slowly modifying our project to better suit their needs.

7 Qualifications of Team Members

We are a team of sophomore CS majors who have varied experience in the field.

Suhaas Reddy has had two years of programming experience. He has also served as a course assistant
for the School of Computer Science for three semesters which gives him an understanding of what computer
science students may need from a debugging tool. This spring Suhaas competed in his first Hackathon where
he and a group of three other students worked to create a webapp which eliminated unwanted Craigslist
postings from view using machine learning, and sorted the rest based on specific attributes. He is well-
versed in Python, CO, and C.

Shyam Raghavan has had seven years of programming experience. He has served as a teaching assistant
for the School of Computer Science for two semesters, specifically for 15-122, which makes him especially
prepared to create a teaching tool for CO, the main language used in the course. In the past, Shyam has
interned at Thumbtack, a west coast company which specializes in enabling consumers to hire experience
professionals from a variety of fields. Shyam has experience with C, JavaScript, and CO.

Aaron Gutierrez has had ten years of programming experience. He has also served as a teaching
assistant for the School of Computer Science for two semesters in 15-122 with Shyam. This past summer
Aaron worked at Orion Pipeline developing web applications for real-time resource monitoring. Aaron is
very well-versed in JavaScript, C, and CO.

Mitchell Plamann has had nine years of programming experience. He has interned at Rockwell Au-
tomation, doing firmware developement for embedded systems. Mitchell has coded extensively in C,
Python, and Haskell.

8 Sources Cited

TBD

